Skip to main content
Log in

The karyotypes of five species of the Scinax perpusillus group (Amphibia, Anura, Hylidae) of southeastern Brazil show high levels of chromosomal stabilization in this taxon

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Based on morphological, bioacoustics, and morphological traits, the genus Scinax has been subdivided into two major clades: S. catharinae and S. ruber. The first clade includes S. catharinae and S. perpusillus groups, whereas the second clade includes S. rostratus and S. uruguayus groups. Chromosome morphology, NOR and C-banding patterns of variation support these clades. This study aims the cytogenetic characterization of five species currently included in the S. perpusillus group: Scinax sp. (gr. perpusillus), S. arduous, S. belloni, S. cosenzai, and S. v-signatus, including standard cytogenetic techniques and repetitive DNA FISH probes. All species had 2n = 24 chromosomes. Nucleolar organizing regions occurred in chromosome pair 6 in all species, but differed in their locations among some species, suggesting a putative synaponomastic character for the clade. In S. belloni, the first chromosome pair was a metacentric, contrasting with the submetacentric first pair reported in all other species of the genus. Scinax sp. (gr. perpusillus) and S. v-signatus had similar karyotypic formulae, suggesting they are related species. Scinax cosenzai had a divergent C-banding pattern. Repetitive DNA probes hybridized more frequently in chromosomal subtelomeric regions in all species indicating recent cladogenesis in these species. Karyotypic evidence indicates unreported high levels of stabilization within S. perpusillus and in S. catharinae clade, resulting in a wealth of characters potentially informative for higher phylogenetic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alves-Silva R, Silva HR (2009) Life in bromeliads: reproductive behavior and the monophyly of the Scinax perpusillus species group (Anura: Hylidae). J Nat Hist 43:205–217

    Article  Google Scholar 

  • Anderson K (1991) Chromosome evolution in Holarctic Hyla tree frogs. In: Green DM, Sessions SK (eds) Amphibian cytogenetics and evolution. Academic Press, San Diego, p 189

    Google Scholar 

  • Baldissera FA, Oliveira PSL, Kasahara S (1993) Cytogenetics of four Brazilian Hyla species (Amphibia, Anura) and description of a case with a supernumerary chromosome. Brazil J Genet 16:335–345

    Google Scholar 

  • Barrio A, Pistol De Rubel D (1970) Características del cariotipo de los pséudidos (Amphibian, Anura). Physis 29:505–510

    Google Scholar 

  • Beçak ML (1968) Chromosomal analysis of eighteen species of Anura. Caryologia 21:191–208

    Article  Google Scholar 

  • Bogart JP (1973) Evolution of anuran karyotypes. In: Vial JL (ed) Evolutionary biology of the anurans. University of Missouri Press, Columbia, pp 337–349

    Google Scholar 

  • Bogart JP, Bogart JE (1971) Genetic compatibility experiments between some South American anuran amphibians. Herpetol 27(3):229–235

    Google Scholar 

  • Busin CS, Lima AP, Prado CPA, Strüssmann C, Siqueira S, Recco-Pimentel MS (2006) Chromosomal differentiation of populations of Lysapsus limellus limellus, L. l. bolivianus, and of Lysapsus caraya (Hylinae, Hylidae). Micron 37:355–362

    Article  PubMed  Google Scholar 

  • Cardozo DE, Leme DM, Bortoleto JF, Catroli GF, Baldo D, Faivovich J, Kolenc F, Silva APZ, Borteiro C, Haddad CFB, Kasahara S (2011) Karyotypic data on 28 species of Scinax (Amphibia: Anura: Hylidae) diversity and informative variation. Copeia 2011:251–263

    Article  Google Scholar 

  • Catroli GF, Kasahara S (2009) Cytogenetic data on species of the family Hylidae (Amphibia, Anura): results and perspectives. Publicatio 15:67–86

    Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  CAS  PubMed  Google Scholar 

  • Cioffi MB, Martins C, Bertolo LAC (2009) Comparative chromosome mapping of repetitive sequences. Implications for genomic evolution in the fish, Hoplias malabaricus. BMC Genet 10:34

    Article  PubMed Central  PubMed  Google Scholar 

  • Cioffi MB, Kejnovský E, Bertollo LAC (2010) The chromosomal distribution of microsatellite repeats in the genome of the wolf fish Hoplias malabaricus, focusing on the sex chromosomes. Cytogenet Genome Res 132:289–296

    Article  PubMed  Google Scholar 

  • Cioffi MB, Kejnovský E, Marquioni V, Poltronieri J, Molina WF, Diniz D, Bertollo LAC (2012) The key role of repeated DNAs in sex chromosome evolution in two fish species with ZW sex chromosome system. Mol Cytogent 5:28

    Article  CAS  Google Scholar 

  • Duellman WE (1967) Additional studies of chromosomes of anuran amphibians. Syst Zool 16:38–43

    Article  CAS  PubMed  Google Scholar 

  • Faivovich J (2002) A cladistic analysis of Scinax (Anura: Hylidae). Cladistics 18:367–393

    Article  Google Scholar 

  • Frost DR (2015) Amphibian species of the world 6.0: an online reference. http://research.amnh.org/herpetology/amphibia/index.html. Accessed in 14 March 2015

  • Green DM, Sessions SK (eds) (1991) Nomenclature for chromosomes. In: Amphibian cytogenetics and evolution. Academic Press, San Diego, p 223

  • Gruber SL, Zina J, Narimatsu H, Haddad CFB, Kasahara S (2012) Comparative karyotype analysis and chromosome evolution in the genus Aplastodiscus. BMC Genet 13:28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Howell WM, Black DA (1980) Controlling silver-staining of nucleolus organizer regions with a protective colloidal developer: step method. Experientia 36:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • Jentzsch IMV, Bagshaw AT, Buschiazzo E, Merkel A, Gemmell NJ (2008) Evolution of microsatellite DNA. eLS 361:1–14

    Google Scholar 

  • Kasahara S, Silva APZ, Gruber S, Haddad CFB (2003) Comparative cytogenetic analysis on four tree frog species (Anura, Hylidae, Hylinae) from Brazil. Cytogenet Genome Res 103:155–162

    Article  CAS  PubMed  Google Scholar 

  • King M (1990) Amphibia. In: Jhon B, Gwent C (eds) Animal cytogenetics. Gebruder Borntraeger, Berlin, pp 1–241

    Google Scholar 

  • Lesk AM (2012) Microarrays and transcriptomics. In: Introduction to genomics, 2nd edn. Oxford University Press, Oxford, pp 265–293

  • Martins C, Ferreira IA, Oliveira C, Foresti F, Galetti PE (2006) A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica 127:133–141

    Article  CAS  PubMed  Google Scholar 

  • Maxon R, Cohn R, Kedes L (1983) Expression and organization of histones genes. Annu Rev Genet 17:239–277

    Article  Google Scholar 

  • Nogueira L, Paim F, Diniz D, Solé M, Affonso P, Siqueira S, Sampaio I (2015a) Cytogentic analysis of Scinax auratus and Scinax eurydice (Anura, Hylidae) with emphasis on cytotaxonomy. Comp cytogenet 9(2):227–236

    Article  PubMed Central  PubMed  Google Scholar 

  • Nogueira L, Zanoni JB, Solé M, Affonso P, Siqueira S, Sampaio I (2015b) Cytogenetic studies in six species of Scinax (Anura, Hylidae) clade Scinax ruber from northern and northeastern Brazil. Genet Mol Biol 38(2):156–161

    Article  PubMed Central  PubMed  Google Scholar 

  • Nunes RRA, Fagundes V (2008) Cariótipos de oito espécies de anfíbios das subfamílias Hylinae e Phyllomedusinae (Anura, Hylidae) do Espírito Santo, Brasil. Bol Mus Biol Mello Leitão 23:21–36

    Google Scholar 

  • Peixoto OL (1987) Caracterização do grupo ‘‘perpusillus’’ e revalidação da posição taxonômica de Ololygon perpusilla perpusilla e Ololygon perpusilla v-signata (Amphibia, Anura, Hylidae). Arq Univ Fed Rural Rio J 10:37–49

    Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci 83:2934–2938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poltronieri J, Marquioni V, Bertollo LAC, Kejnovský E, Molina WF, Liehr T, Cioffi MB (2013) Comparative chromosomal mapping of microsatellites in Leporinus species (Characiformes, Anostomidae): unequal accumulation on the W chromosomes. Cytogenet Genome Res 142:40–45

    Article  PubMed  Google Scholar 

  • Pombal JP, Bastos RP (2003) Vocalizações de Scinax perpusillus (A. Lutz & B. Lutz) e S. arduous Peixoto (Anura, Hylidae), com comentários taxonômicos. Rev Bras Zool 20:607–610

    Article  Google Scholar 

  • Pombal JP, Haddad CFB, Kasahara S (1995) A new species of Scinax (Anura: Hylidae) from southeastern Brazil with comments on the genus. J Herpetol 29:1–6

    Article  Google Scholar 

  • Rabello MN (1970) Chromosomal studies in Brazilian anurans. Caryologia 23:45–49

    Article  Google Scholar 

  • Schmid M (1978) Chromosome banding in Amphibia: constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma 66:361–388

    Article  Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324

    Article  CAS  PubMed  Google Scholar 

  • Stephan W, Walsh B (2007) Repetitive DNA: evolution. eLS 26:1–7

    Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Nível Superior (CAPES) for financial support. The Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) issued the collect permits 33456-1 and 26157-7 to JVAL and RNF. Financial support was given to RNF through a CNPq scientific productivity fellowship. Comments of anonymous reviewers helped to improve an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antônio Amorim Peixoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peixoto, M.A.A., Lacerda, J.V.A., Coelho-Augusto, C. et al. The karyotypes of five species of the Scinax perpusillus group (Amphibia, Anura, Hylidae) of southeastern Brazil show high levels of chromosomal stabilization in this taxon. Genetica 143, 729–739 (2015). https://doi.org/10.1007/s10709-015-9870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-015-9870-1

Keywords

Navigation