Skip to main content
Log in

Macrogeographic and microgeographic genetic structure of the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae) from Catamarca, Argentina

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The genetic structure in populations of the Chagas’ disease vector Triatoma infestans from six localities belonging to areas under the same insecticide treatment conditions of Catamarca province (Argentina) was examined at macrogeographical and microgeographical scales. A total of 238 insects were typed for 10 polymorphic microsatellite loci. The average observed and expected heterozygosities ranged from 0.319 to 0.549 and from 0.389 to 0.689, respectively. The present results confirm that populations of T. infestans are highly structured. Spatial genetic structure was detectable at macrogeographical and microgeographical levels. Comparisons of the levels of genetic variability between two temporal samples were carried out to assess the impact of the insecticide treatment. The genetic diversity of the population was not significantly affected after insecticide use since different genetic parameters (allele number, observed and expected heterozygosities) remained stable. However, loss of low frequency alleles and not previously found alleles were detected. The effective population size (N e ) estimated was substantially lower in the second temporal sample than in the first; nevertheless, it is possible that the size of the remnant population after insecticide treatment was still large enough to retain the genetic diversity. Very few individuals did not belong to the local T. infestans populations as determined by assignment analyses, suggesting a low level of immigration in the population. The results of the assignment and first-generation migrant tests suggest male-biased dispersal at microgeographical level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

θ:

Estimator of Wright’s F ST

CI:

Confidence intervals

f :

Estimator of Wright’s F IS

F IS :

Inbreeding coefficient

F ST :

A measure of the variance of gene frequencies between populations

H E :

Unbiased expected heterozygosity

H eq :

Expected heterozygosity based on the number of alleles and sample size

H O :

Observed heterozygosity

HW:

Hardy-Weinberg

IAM:

Infinite allele model

MCMC:

Markov chain Monte Carlo

mtDNA:

Mitochondrial DNA

N A :

Number of alleles

N e :

Effective population size

PCR:

Polymerase chain reactions

SMM:

Stepwise mutation model

TPM:

Intermediate two-phase model

References

  • Bruford MW, Wayne RK (1993) Microsatellites and their application to population genetic studies. Curr Opin Genet Dev 3:939–943

    Article  PubMed  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  PubMed  CAS  Google Scholar 

  • Dujardín JP, Tibayrenc M, Venegas E, Maldonado L, Desjeux P, Ayala FJ (1987) Isozyme evidence of lack of speciation between wild and domestic Triatoma infestans (Heteroptera: Reduviidae) in Bolivia. J Med Entomol 24:40–45

    PubMed  Google Scholar 

  • Dujardin JP, La Fuente C, Cardozo L, Tibayrenc M (1988) Dispersing behavior of T. infestans: evidence from a genetical study of field populations in Bolivia. Mem Inst Oswaldo Cruz 83:435–440

    Article  PubMed  Google Scholar 

  • Dujardin JP, Schofíeld CJ, Tibayrenc M (1998) Population structure of Andean Triatoma infestans: allozyme frequencies and their epidemiological relevance. Med Vet Entomol 12:20–29

    Article  PubMed  CAS  Google Scholar 

  • García BA, Soares Barata JM, Blanco A (1995a) Enzyme polymorphism among Triatoma infestans (Hemiptera: Reduviidae) colonies. J Med Entomol 32:126–133

    PubMed  Google Scholar 

  • García BA, Canale DM, Blanco A (1995b) Genetic structure of four species of Triatoma (Hemiptera: Reduviidae) from Argentina. J Med Entomol 32:134–137

    PubMed  Google Scholar 

  • García BA, Manfredi C, Fichera L, Segura EL (2003) Variation in mitochondrial 12S and 16S ribosomal DNA sequences in natural populations of Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 68:692–694

    PubMed  Google Scholar 

  • García BA, Zheng L, Pérez de Rosas AR, Segura EL (2004) Isolation and characterization of polymorphic microsatellite loci in the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae). Mol Ecol Notes 4:568–571

    Article  CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet (1995)

  • Goudet J, Raymond M, De Meeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1931–1938

    Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi (version 1.2): a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiacea). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Monteiro FA, Pérez R, Panzera F, Dujardin JP, Galvão C, Rocha D, Noireau F, Schofield C, Beard CB (1999) Mitochondrial DNA variation of Triatoma infestans populations and its implication on the specific status of T. melanosoma. Mem Int Oswaldo Cruz 94:229–238

    CAS  Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York

    Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  PubMed  CAS  Google Scholar 

  • Peel D, Ovenden JR, Peel SL (2004) NeEstimator: software for estimating effective population size. Version 1.3. Queensland Government. Department of Primary Industries and Fisheries

  • Pereira J, Dujardin JP, Salvatella R, Tibayrenc M (1996) Enzymatic variability and phylogenetic relatedness among Triatoma infestans, T. platensis, T. delpontei and T. rubrovaria. Heredity 77:47–54

    Article  CAS  Google Scholar 

  • Pérez de Rosas AR, Segura EL, García BA (2007) Microsatellite analysis of genetic structure in natural Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina: its implication in assessing the effectiveness of Chagas’ disease vector control programmes. Mol Ecol 16:1401–1412

    Article  PubMed  CAS  Google Scholar 

  • Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  PubMed  CAS  Google Scholar 

  • Primmer CR, Saino N, Moller AP, Ellegren H (1998) Unraveling the process of microsatellite evolution through analysis of germ line mutations in barn swallows Hirundo rustica. Mol Biol Evol 15:1047–1054

    CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (versión 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rice WR (1989) Analysing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Schlötterer C, Pemberton J (1994) The use of microsatellites for genetic analysis of natural populations. In: Schierwater B, Streit B, Wagner GP, DeSalle R (eds) Molecular ecology and evolution: approaches and applications. Birkhauser Verlag, Basel, pp 203–214

    Google Scholar 

  • Schmunis GA (1999) Iniciativa del Cono Sur. In: Proceedings of the 2nd international workshop on population biology and control of Triatominae, Santo Domingo de los Colorados, Ecuador, INDRE, Mexico City, pp 26–31

  • Schofield CJ (1988) Biosystematics of the Triatominae. In: Service MW (ed) Biosystematics of haematophagous insects, systematics association special, Vol 37. Clarendon, Oxford, pp 285–312

    Google Scholar 

  • Spiess EB (1977) Genes in populations. John Wiley & Sons, New York

    Google Scholar 

  • Weber JL, Wong C (1993) Mutation of human short tandem repeats. Hum Mol Genet 2:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Werman SD, Davidson EH, Britten RJ (1990) Rapid evolution in a fraction of the Drosophila nuclear genome. J Mol Evol 30:281–289

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Antonio Blanco for critical revision of the manuscript and Octavio Fusco for technical assistance. We also thank Blanca Herrera de Bravo, Arturo Herrera, and coworkers of the National Programme of Chagas Control-Catamarca. Research was supported by the grants from the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) of Argentina, and the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba. A. R. Pérez de Rosas is a Fellow, and E. L. Segura, L. Fichera, and B. A. García are Career Investigators of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Alicia García.

Appendix

Appendix

Appendix I Allele frequencies for each locus and sampling site

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez de Rosas, A.R., Segura, E.L., Fichera, L. et al. Macrogeographic and microgeographic genetic structure of the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae) from Catamarca, Argentina. Genetica 133, 247–260 (2008). https://doi.org/10.1007/s10709-007-9208-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-007-9208-8

Keywords

Navigation