Skip to main content

Advertisement

Log in

Muller’s ratchet in symbiont populations

  • ORIGINAL PAPER
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Muller’s ratchet, the inevitable accumulation of deleterious mutations in asexual populations, has been proposed as a major factor in genome degradation of obligate symbiont organisms. Essentially, if left unchecked the ratchet will with certainty cause extinction due to the ever increasing mutational load. This paper examines the evolutionary fate of insect symbionts, using mathematical modelling to simulate the accumulation of deleterious mutations. We investigate the effects of a hierarchical two level population structure. Since each host contains its own subpopulation of symbionts, there will be a large number of small symbiont populations linked indirectly via selection on the host level. We show that although the separate subpopulations will accumulate deleterious mutations quickly, the symbiont population as a whole will be protected from extinction by selection acting on the hosts. As a consequence, the extent of genome degradation observed in present day symbionts is more likely to represent loss of functions that were (near-) neutral to the host, rather than a snap shot of a decline towards complete genetic collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbot, Moran (2002) Extremely low levels of polymorphism in endosymbionts of aphids (Pemphigus). Mol Ecol 11:2649–2660

    Article  CAS  PubMed  Google Scholar 

  • Andersson JO, Andersson SGE (1999) Insights into the evolutionary process of genome degradation. Current Opin Genet Dev 9:664–671

    Article  CAS  Google Scholar 

  • Baumann P, Moran NA, Baumann L (1997) The evolution and genetics of aphid endosymbionts. Bioscience 47:12–20

    Article  Google Scholar 

  • Berg OG, Kurland CG (2002) Evolution of microbial genomes: sequence acquisition and loss. Mol Biol Evol 19:2265–2276

    CAS  PubMed  Google Scholar 

  • Bergstrom CT, Pritchard J (1998) Germline bottlenecks and the evolutionary maintenance of the mitochondrial genome. Genetics 149:2135–2146

    CAS  PubMed  Google Scholar 

  • Brynnel EU, Kurland CG, Moran NA, Andersson SGE (1998) Evolutionary rates for tuf genes in endosymbionts of aphids. Mol Biol Evol 15:574–582

    CAS  PubMed  Google Scholar 

  • Clark MA, Moran NA, Baumann P (1999) Sequence evolution in bacterial symbionts having extreme base compositions. Mol Biol Evol 16:1586–1598

    CAS  PubMed  Google Scholar 

  • von Dohlen CD, Kohler S, Alsop ST, McManus WR (2001) Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature 412:433–436

    Article  Google Scholar 

  • Fares MA, Ruiz-González MX, Moya A, Elena SF, Barrio E (2002) Endosymbiontic bacteria: GroEL buffers against deleterious mutations. Nature 417:398–398

    Article  CAS  PubMed  Google Scholar 

  • Frank AC, Amiri H, Andersson SGE (2002) Genome deterioration: loss of repeated sequences and accumulation of junk DNA. Genetica 115:1–12

    Article  PubMed  Google Scholar 

  • Funk DJ, Wernegreen JJ, Moran NA (2001) Intraspecific variation in symbionts genomes: bottlenecks and the aphid-Buchnera association. Genetics 157:477–489

    CAS  PubMed  Google Scholar 

  • Gabriel W, Lynch M, Bürger R (1993) Muller’s ratchet and mutational meltdowns. Evolution 47:1744–1757

    Article  Google Scholar 

  • Gomez-Valero L, Latorre A, Silva FJ (2004) The evolutionary fate of nonfunctional DNA in the bacterial endosymbiont Buchnera aphidicola. Mol Biol Evol 21:2172–2181

    Google Scholar 

  • Gordo I, Charlesworth B (2000) The degeneration of asexual haploid populations and the speed of Muller’s ratchet. Genetics 154:1379–1387

    CAS  PubMed  Google Scholar 

  • Gordo I, Dionisio F (2005) Nonequilibrium model for estimating parameters of deleterious mutations. Phys Rev E 71:031907

    Article  CAS  Google Scholar 

  • Haigh J (1978) The accumulation of deleterious genes in a population—Muller’s ratchet. Theor Popul Biol 14:251–267

    Article  CAS  PubMed  Google Scholar 

  • Hanski I, Gilpin M (1997) Metapopulation biology: ecology, genetics and evolution. Academic, San Diego

    Google Scholar 

  • van Hoek AHAM, van Alen TA, Sprakel VSI, Leunissen JAM, Brigge T, Vogels GD, Hackstein JHP (2000) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258

    PubMed  Google Scholar 

  • Kimura M (1987) Molecular evolutionary clock and the neutral theory. J Mol Evol 26:24–33

    Article  CAS  PubMed  Google Scholar 

  • Komaki K, Ishikawa H (1999) Intracellular bacterial symbionts of aphids possess many genomic copies per bacterium. J Mol Evol 48:717–722

    Article  CAS  PubMed  Google Scholar 

  • Krueger DM, Gustafsson RG, Cavanaugh CM (1996) Vertical transmission of chemoautotrophic symbionts in the bivalve Solemya velum (Bivalvia: Protobranchia). Biol Bull 190:195–202

    Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Lynch M, Conery J, Bürger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489–518

    Article  Google Scholar 

  • Mira A, Moran NA (2002) Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb Ecol 44:137–143

    Article  CAS  PubMed  Google Scholar 

  • Moran NA (1996) Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93:2873–2878

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Telang A (1998) Bacteriocyte-associated symbionts of insects—a variety of insect groups harbor ancient prokaryotic endosymbionts. Bioscience 48:295–304

    Article  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9

    Google Scholar 

  • Nilsson AI, Kugelberg E, Berg OG, Andersson DI (2004) Experimental adaptation of Salmonella typhimurium to Mice. Genetics 168:1119–1130

    Article  PubMed  Google Scholar 

  • Ovaskainen O (2002) The effective size of a metapopulation living in a heterogeneous patch network. Am Nat 160:612–628

    Article  PubMed  Google Scholar 

  • Pamilo P, Nei M, Li W-H (1987) Accumulation of mutations in sexual and asexual populations. Genet Res Camb 49:135–146

    CAS  Google Scholar 

  • Rispe C, Moran NA (2000) Accumulation of deleterious mutations in endosymbionts: Muller’s ratchet with two levels of selection. Am Nat 156:425–441

    Article  Google Scholar 

  • Selosse MA, Albert A, Godelle B (2001) Reducing the genome size of organelles favours gene transfer to the nucleus. Trends in Ecol Evol 16:135–141

    Google Scholar 

  • Silva FJ, Latorre A, Moya A (2001) Genome size reduction through multiple events of gene disintegration in Buchnera APS. Trends in Genet 17:615–618

    Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp APS. Nature 407:81–86

    Article  CAS  PubMed  Google Scholar 

  • Stephan W, Chao L, Smale JG (1993) The advance of Muller ratchet in a haploid asexual population—approximate solutions based on diffusion-theory. Genet Res 61:225–231

    Article  CAS  PubMed  Google Scholar 

  • Tamas I, Klasson L, Canbäck B, Näslund AK, Eriksson A, Wernegreen JJ, Sandström JP, Moran NA, SGE Andersson (2002) 50 Million years of genomic stasis in endosymbiotic bacteria. Science 296:2376–2379

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Swedish Research Council and the National Graduate School in Scientific Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto G. Berg.

Appendix

Appendix

Deterministic growth and accumulation of mutations

Assume that a population grows during time T from M 0 individuals. Unmutated individuals grow with rate 1, individuals that carry k mutations grow with rate (1 + s)k. Mutations appear with probability μ in each replication. Each mutation increases the growth rate by a factor 1 + s. The deterministic growth equations for the number of individuals, n k (t), that carry k mutations at time t follow

$${\frac{{{\text{d}}n_{k} }} {{{\text{d}}t}}\; = \;{\left( {{\text{1 }} + s} \right)}^{k} {\left( {{\text{1 }} - \mu } \right)}n_{k} + \mu {\left( {{\text{1 }} + s} \right)}^{{k - {\text{1}}}} n_{{k - {\text{1}}}} }$$
(5)

This is valid for k ≥ 0 if \({n_{{ - {\text{1}}}} \equiv {\text{0 }}{\text{.}}} \) Introducing new variables

$${f_{k} {\left( t \right)}\; = \;{\text{e}}^{{ - {\left( {{\text{1 }} - \mu } \right)}{\left( {{\text{1 }} + s} \right)}^{k} \cdot t}} n_{k} {\left( t \right)}} $$
(6)

the growth equations simplify to

$$ {\frac{{{\text{d}}f_{k} }} {{{\text{d}}t}}\; = \;\mu {\left( {{\text{1 }} + s} \right)}^{{k - {\text{1}}}} {\text{e}}^{{ - {\left( {{\text{1 }} - \mu } \right)}{\left( {{\text{1 }} + s} \right)}^{{k - {\text{1}}}} \cdot st}} f_{{k - {\text{1}}}} {\left( t \right)}}. $$
(7)

For k = 0, the solution is f 0(t) = f 0(0) which gives \( {n_{{\text{0}}} {\left( t \right)}\; = \;{\text{e}}^{{{\left( {{\text{1 }} - \mu } \right)} \cdot t}} \cdot n_{{\text{0}}} {\left( {{\text{0 }}} \right)}{\text{.}}} \) Inserting f 0(t) = n 0(0) into the growth equation for k = 1, we can solve for f 1(t) giving

$$ {n_{{\text{1}}} {\left( t \right)} = {\text{e}}^{{{\left( {1 - \mu } \right)}{\left( {1 + s} \right)} \cdot t}} {\left\{ {n^{{{\text{0 }}}}_{{\text{1}}} + n^{{0 }}_{0} \frac{\mu } {{s{\left( {{\text{1 }} - \mu } \right)}}}{\left[ {{\text{1 }} - {\text{e}}^{{ - {\left( {{\text{1 }} - \mu } \right)} \cdot st}} } \right]}} \right\}}}, $$
(8)

where n 01  = n 1(0) etc. Continuing the recursion to k = 2 gives

$$ \eqalign{{} n_{{\text{2}}} {\left( t \right)}\, = \,{\text{e}}^{{{\left( {1 - \mu } \right)}{\left( {1 + s}\right)}^{{2 }} \cdot t}} \left\{ {n^{\text{0 }}_{{\text{2}}} +n^{{0 }}_{1} \frac{\mu } {{s{\left( {{\text{1 }} - \mu }\right)}}}{\left[ {{\text{1 }} - {\text{e}}^{{ - {\left( {{\text{1}} - \mu } \right)}{\left( {{\text{1 }} + s} \right)} \cdot st}} }\right]}} \right. \cr + n^{{0 }}_{0} {\left({\frac{\mu } {{s{\left( {{\text{1 }} - \mu } \right)}}}}\right)}^{{{\text{2 }}}} \left[ \frac{{{\text{1 }}}} {{{\text{2 }}+ s}} - {\text{e}}^{{ - {\left( {{\text{1 }} - \mu }\right)}{\left( {{\text{1 }} + s} \right)} \cdot st}}\right.\cr +\left.\left.\frac{{{\text{1 }} + s}} {{{\text{2 }} + s}}{\text{e}}^{{ -{\left( {{\text{1 }} - \mu } \right)}{\left( {{\text{2 }} + s}\right)} \cdot st}} \right] \right\}.}$$
(9a)

In principle, the recursion could continue for all values of k with increasing complexity. If for simplicity it is assumed that at most two mutations can be acquired during one growth period, we get

$$\begin{array}{*{20}c} n_{k} \left( t \right) = {\text{e}}^{{\left({1 - \mu } \right)}{\left( {1 + s} \right)}^{k} \cdot t} \left\{n^{0}_{k} + n^{0}_{k - 1} \frac{\mu }{s{\left({{\text{1 }} - \mu } \right)}}\left[ {{\text{1 }} - {\text{e}}^{{- {\left( {{\text{1 }} - \mu } \right)}{\left( {\text{1} + s}\right)}^{{k - {\text{1}}}} \cdot st}} } \right] \right.\cr\left. + n^{0 }_{k - 2} \left( \frac{\mu } {s{\left( {\text{1 } -\mu } \right)}} \right)^{\text{2 } }\left[ \frac{{\text{1 }}}{\text{2 }} + s - {\text{e}}^{{- {\left( {{\text{1 }} - \mu } \right)}{\left( {\text{1} + s}\right)}^{{k - {\text{1}}}} \cdot st}} \right. \right. \cr \left.\left. + \frac{{{\text{1 }} + s}}{{{\text{2 }} +s}}{\text{e}}^{{ - {\left( {{\text{1 }} - \mu } \right)}{\left({{\text{1 }} + s} \right)}^{{k - {\text{2}}}} {\left( {{\text{2 }}+ s} \right)} \cdot st}}\right]\right\}.\end{array} $$
(9b)

In the application to symbiont growth in the main text, the parameter s should be replaced by S S. Here n k (t) is the number of symbionts with k mutations at time t, and t is the number of generations needed to get to M T from M 0, which is calculated as:

$$ {t = \frac{{{\text{ln}}{\left( {M_{T} /M_{{\text{0}}} } \right)}}} {{{\text{ln}}{\left( {{\text{2 }}} \right)}}}}. $$
(10)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettersson, M.E., Berg, O.G. Muller’s ratchet in symbiont populations. Genetica 130, 199–211 (2007). https://doi.org/10.1007/s10709-006-9007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-9007-7

Keywords

Navigation