Skip to main content
Log in

Phylogeny of the caniform carnivora: evidence from multiple genes

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The monophyletic group Caniformia in the order Carnivora currently comprises seven families whose relationships remain contentious. The phylogenetic positions of the two panda species within the Caniformia have also been evolutionary puzzles over the past decades, especially for Ailurus fulgens (the red panda). Here, new nuclear sequences from two introns of the β-fibrinogen gene (β-fibrinogen introns 4 and 7) and a complete mitochondrial (mt) gene (ND2) from 17 caniform representatives were explored for their utilities in resolving higher-level relationships in the Caniformia. In addition, two previously available nuclear (IRBP exon 1 and TTR intron 1) data sets were also combined and analyzed simultaneously with the newly obtained sequence data in this study. Combined analyses of four nuclear and one mt genes (4417 bp) recover a branching order in which almost all nodes were strongly supported. The present analyses provide evidence in favor of Ailurus fulgens as the closest taxon to the procyonid-mustelid (i.e., Musteloidea sensu stricto) clade, followed by pinnipeds (i.e., Otariidae and Phocidae), Ursidae (including Ailuropoda melanoleuca), and Canidae, the most basal lineage in the Caniformia. The potential utilities of different genes in the context of caniform phylogeny were also evaluated, with special attention to the previously unexplored β-fibrinogen intron 4 and 7 genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S.F. Altschul T.L. Madden A.A. Schäffer J. Zhang Z. Zhang W. Miller D.J. Lipman (1997) ArticleTitleGapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucleic Acids Res. 25 3389–3402 Occurrence Handle9254694 Occurrence Handle1:CAS:528:DyaK2sXlvFyhu7w%3D Occurrence Handle10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • U. Arnason B. Widegren (1986) ArticleTitlePinniped phylogeny enlightened by molecular hybridizations using highly repetitive DNA Mol. Biol. Evol. 3 356–365 Occurrence Handle1:CAS:528:DyaL28XkvFansr4%3D

    CAS  Google Scholar 

  • U. Arnason C. Ledje (1993) The use of highly repetitive DNA for resolving cetacean and pinniped phylogenies F.S. Szalay M. Novacek McKenna (Eds) Mammal Phylogeny Springer-Verlag NY

    Google Scholar 

  • U. Arnason J.A. Adegoke K. Bodin E.W. Born Y.B. Esa A. Gullberg M. Nilsson R.V. Short X. Xu A. Janke (2002) ArticleTitleMammalian mitogenomic relationships and the root of the eutherian tree Proc. Natl. Acad. Sci. USA 99 8151–8156 Occurrence Handle12034869 Occurrence Handle1:CAS:528:DC%2BD38XkvVGisLc%3D Occurrence Handle10.1073/pnas.102164299

    Article  PubMed  CAS  Google Scholar 

  • F.K. Barker (2004) ArticleTitleMonophyly and relationships of wrens (Aves: Troglodytidae): a congruence analysis of heterogeneous mitochondrial and nuclear DNA sequence data Mol. Phylogenet. Evol. 31 486–504 Occurrence Handle15062790 Occurrence Handle1:CAS:528:DC%2BD2cXivVKntLs%3D Occurrence Handle10.1016/j.ympev.2003.08.005

    Article  PubMed  CAS  Google Scholar 

  • O.R.P. Bininda-Emonds J.L. Gittleman A. Purvis (1999) ArticleTitleBuilding large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia) Biol. Rev. 74 143–175 Occurrence Handle10396181 Occurrence Handle1:STN:280:DyaK1MzisVGjsQ%3D%3D Occurrence Handle10.1017/S0006323199005307

    Article  PubMed  CAS  Google Scholar 

  • K. Bremer (1988) ArticleTitleThe limits of amino acid sequence data in angiosperm phylogenetic reconstruction Evolution 42 795–803 Occurrence Handle1:CAS:528:DyaL1cXlsVKntrY%3D Occurrence Handle10.2307/2408870

    Article  CAS  Google Scholar 

  • K. Bremer (1994) ArticleTitleBranch support and tree stability Cladistics 10 295–304 Occurrence Handle10.1111/j.1096-0031.1994.tb00179.x

    Article  Google Scholar 

  • S. Creer A. Malhotra R.S. Thorpe (2003) ArticleTitleAssessing the phylogenetic utility of four mitochondrial genes and a nuclear intron in the Asian pit viper genus, Trimeresurus: separate, simultaneous, and conditional data combination analyses Mol. Biol. Evol. 20 1240–1251 Occurrence Handle12777535 Occurrence Handle1:CAS:528:DC%2BD3sXms1Wks7s%3D Occurrence Handle10.1093/molbev/msg136

    Article  PubMed  CAS  Google Scholar 

  • I. Delisle C. Strobeck (2002) ArticleTitleConserved primers for rapid sequencing of the complete mitochondrial genome from carnivores, applied to three species of bears Mol. Biol. Evol. 19 357–361 Occurrence Handle11861896 Occurrence Handle1:CAS:528:DC%2BD38XitFSnsb8%3D

    PubMed  CAS  Google Scholar 

  • J.W. Dragoo R.L. Honeycutt (1997) ArticleTitleSystematics of mustelid-like carnivores J Mamm 78 426–443

    Google Scholar 

  • J.F. Eisenberg (1989) An introduction to the Carnivora J.L. Gittleman (Eds) Carnivore Behavior, Ecology, and Evolution Cornell University Press Ithaca NY 1–9

    Google Scholar 

  • J.S. Farris M. Kallersjo A.G. Kluge C. Bult (1994) ArticleTitleTesting significance of congruence Cladistics 10 315–320 Occurrence Handle10.1111/j.1096-0031.1994.tb00181.x

    Article  Google Scholar 

  • J.S. Farris M. Kallersjo A.G. Kluge C. Bult (1995) ArticleTitleConstructing a significance test for incongruence Syst. Biol. 44 783–791

    Google Scholar 

  • J. Felsenstein (1985) ArticleTitleConfidence limits on phylogenies: an approach using the bootstrap Evolution 39 783–791 Occurrence Handle10.2307/2408678

    Article  Google Scholar 

  • J.J. Flynn M.A. Nedbal (1998) ArticleTitlePhylogeny of the Carnivora (Mammalia): Congruence vs. incompatibility among multiple data sets Mol. Phylogenet. Evol. 9 414–426 Occurrence Handle9667990 Occurrence Handle1:STN:280:DyaK1czjsVGltw%3D%3D Occurrence Handle10.1006/mpev.1998.0504

    Article  PubMed  CAS  Google Scholar 

  • J.J. Flynn M.A. Nedbal J.W. Dragoo R.L. Honeycutt (2000) ArticleTitleWhence the red panda? Mol. Phylogenet. Evol. 17 190–199 Occurrence Handle11083933 Occurrence Handle1:STN:280:DC%2BD3M3pvFyrsg%3D%3D Occurrence Handle10.1006/mpev.2000.0819

    Article  PubMed  CAS  Google Scholar 

  • D.M. Hills J.J. Bull (1993) ArticleTitleAn empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis Syst. Biol. 42 182–192

    Google Scholar 

  • R.M. Hunt L.G. Barnes (1994) ArticleTitleBasicranial evidence for ursid affinity of the oldest pinnipeds Proc. San Diego Soc. Nat. Hist. 29 57–67

    Google Scholar 

  • S. Kumar K. Tamura I.B. Jakobsen M. Nei (2001) MEGA2: Molecular Evolutionary Genetics Analysis Software. Version 2.1 Arizona State University Tempe, Arizona, USA

    Google Scholar 

  • C. Ledje U. Arnason (1996) ArticleTitlePhylogenetic analyses of complete cytochrome b genes of the order carnivora with particular emphasis on the caniformia J. Mol. Evol. 42 135–144 Occurrence Handle8919865 Occurrence Handle1:CAS:528:DyaK28XitFSku78%3D Occurrence Handle10.1007/BF02198839

    Article  PubMed  CAS  Google Scholar 

  • R.M. Nowak (1999) Walker’s Mammals of the World EditionNumber6 NumberInSeriesvol. 2 Johns Hopkins University Press Baltimore, MD

    Google Scholar 

  • D. Posada K.A. Crandall (1998) ArticleTitleModeltest: testing the model of DNA substitution Bioinformatics 14 817–818 Occurrence Handle9918953 Occurrence Handle1:CAS:528:DyaK1MXktlCltw%3D%3D Occurrence Handle10.1093/bioinformatics/14.9.817

    Article  PubMed  CAS  Google Scholar 

  • T.M. Prychitko W.S. Moore (1997) ArticleTitleThe utility of DNA sequences of an intron from the β-fibrinogen gene in phylogenetic analysis of woodpeckers (Aves: Picidae) Mol. Phylogenet. Evol. 8 193–204 Occurrence Handle9299224 Occurrence Handle1:CAS:528:DyaK2sXmsVamu74%3D Occurrence Handle10.1006/mpev.1997.0420

    Article  PubMed  CAS  Google Scholar 

  • F. Ronquist J.P. Huelsenbeck (2003) ArticleTitleMrBayes 3: Bayesian phylogenetic inference under mixed models Bioinformatics 19 1572–1574 Occurrence Handle12912839 Occurrence Handle1:CAS:528:DC%2BD3sXntlKms7k%3D Occurrence Handle10.1093/bioinformatics/btg180

    Article  PubMed  CAS  Google Scholar 

  • E. Sambrook F. Fritsch T. Maniatis (1989) Molecular Clonging Cold Spring Harbor Press Cold Spring Harbor, NY

    Google Scholar 

  • H.B. Shaffer P. Meylan M.L. McKnight (1997) ArticleTitleTests of turtle phylogeny: molecular, morphological, and paleontological approaches Syst. Biol. 46 235–268 Occurrence Handle11975342 Occurrence Handle1:STN:280:DC%2BD383js12jtA%3D%3D

    PubMed  CAS  Google Scholar 

  • J.P. Slattery S.J. O’Brien (1995) ArticleTitleMolecular phylogeny of the red panda (Ailurus fulgens) J. Hered. 86 413–422 Occurrence Handle8568209 Occurrence Handle1:CAS:528:DyaK28XotVajtQ%3D%3D

    PubMed  CAS  Google Scholar 

  • M.D. Sorenson (1999) TreeRot, version 2 Boston University Press Boston, MA

    Google Scholar 

  • M.S. Springer R.W. Debry C. Douady H.M. Amrine O. Madsen W.W. Jong Particlede M.J. Stanhope (2001) ArticleTitleMitochondrial versus nuclear gene sequences in deep- level mammalian phylogeny reconstruction Mol. Biol. Evol. 18 132–143 Occurrence Handle11158372 Occurrence Handle1:CAS:528:DC%2BD3MXotVOmsA%3D%3D

    PubMed  CAS  Google Scholar 

  • M.J. Stanhope J. Czelusniak J.S. Si J. Nickerson M. Goodman (1992) ArticleTitleA molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly Mol. Phylogenet. Evol. 1 148–160 Occurrence Handle1342928 Occurrence Handle1:CAS:528:DyaK3sXhtFOrtLY%3D Occurrence Handle10.1016/1055-7903(92)90026-D

    Article  PubMed  CAS  Google Scholar 

  • D.L. Swofford (2001) PAUP*: phylogenetic analysis using parsimony (* and other methods). Version 4.0b8 Sinauer Associates Sunderland, MA

    Google Scholar 

  • J.D. Thompson T.J. Gibson F. Plewniak F. Jeanmougin D.G. Higgins (1997) ArticleTitleThe clustalx windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools Nucleic Acids Res. 24 4876–4882 Occurrence Handle10.1093/nar/25.24.4876

    Article  Google Scholar 

  • P.B. Vrana M.C. Milinkovitch J.R. Powell W.C. Wheeler (1994) ArticleTitleHigher level relationships of the arctoid Carnivora based on sequence data and ‘total evidence’ Mol. Phylogenet. Evol. 3 47–58 Occurrence Handle8025729 Occurrence Handle1:CAS:528:DyaK2MXht1WgsQ%3D%3D Occurrence Handle10.1006/mpev.1994.1006

    Article  PubMed  CAS  Google Scholar 

  • W.C. Wozencraft (1989) The phylogeny of the recent carnivore J.L. Gittleman (Eds) Carnivore Behavior, Ecology, and Evolution Cornell University Press Ithaca, NY 495–535

    Google Scholar 

  • A.R. Wyss J.J. Flynn (1993) A phylogenetic anaysis and definition of the carnivore F.S. Szalay M. Novacek M. McKenna (Eds) Mammal Phylogeny Springer-Verlag NY

    Google Scholar 

  • X. Xia (2000) DAMBE: Data Analysis in Molecular Biology and Evolution Kluwer Academic Boston

    Google Scholar 

  • A.D. Yoder M.M. Burns S. Zehr T. Delefosse G. Veron S.M. Goodman J.J. Flynn (2003) ArticleTitleSingle origin of Malagasy carnivore from an African ancestor Nature 421 734–737 Occurrence Handle12610623 Occurrence Handle1:CAS:528:DC%2BD3sXhsV2rsbo%3D Occurrence Handle10.1038/nature01303

    Article  PubMed  CAS  Google Scholar 

  • L. Yu Q.W. Li O.A. Ryder Y.P. Zhang (2004a) ArticleTitlePhylogeny of the bears (Ursidae) based on nuclear and mitochondrial genes Mol. Phylogenet. Evol. 32 480–494 Occurrence Handle1:CAS:528:DC%2BD2cXlt1elurk%3D Occurrence Handle10.1016/j.ympev.2004.02.015

    Article  CAS  Google Scholar 

  • L. Yu Q.W. Li O.A. Ryder Y.P. Zhang (2004b) ArticleTitlePhylogenetic relationships within mammalian order Carnivora indicated by sequences of two nuclear DNA genes Mol. Phylogenet. Evol. 33 694–705 Occurrence Handle1:CAS:528:DC%2BD2cXpt1Wjsbo%3D Occurrence Handle10.1016/j.ympev.2004.08.001

    Article  CAS  Google Scholar 

  • L. Yu Y.P. Zhang (2005a) ArticleTitlePhylogenetic studies of pantherine cats (Felidae) based on multiple genes, with novel application of nuclear β-Fibrinogen intron 7 to carnivores Mol. Phylogenet. Evol. 35 483–495 Occurrence Handle1:CAS:528:DC%2BD2MXjt1ajurk%3D Occurrence Handle10.1016/j.ympev.2005.01.017

    Article  CAS  Google Scholar 

  • L. Yu Y.P. Zhang (2005b) ArticleTitleEvolutionary implications of multiple SINE insertions in an intronic region from diverse mammals Mammal. Genome. 16 651–660 Occurrence Handle1:CAS:528:DC%2BD2MXhtFemtbfO Occurrence Handle10.1007/s00335-004-2456-3

    Article  CAS  Google Scholar 

  • Y.P. Zhang O.A. Ryder (1993) ArticleTitleMitochondrial DNA sequence evolution in the Arctoidae Proc. Natl. Acad. Sci. USA 90 9557–9561 Occurrence Handle8415740 Occurrence Handle1:CAS:528:DyaK2cXis1Kmu7Y%3D Occurrence Handle10.1073/pnas.90.20.9557

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Zhang, Yp. Phylogeny of the caniform carnivora: evidence from multiple genes. Genetica 127, 65–79 (2006). https://doi.org/10.1007/s10709-005-2482-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-005-2482-4

Keywords