Skip to main content
Log in

QTL mapping and the genetic basis of adaptation: recent developments

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Quantitative trait loci (QTL) mapping has been used in a number of evolutionary studies to study the genetic basis of adaptation by mapping individual QTL that explain the differences between differentiated populations and also estimating their effects and interaction in the mapping population. This analysis can provide clues about the evolutionary history of populations and causes of the population differentiation. QTL mapping analysis methods and associated computer programs provide us tools for such an inference on the genetic basis and architecture of quantitative trait variation in a mapping population. Current methods have the capability to separate and localize multiple QTL and estimate their effects and interaction on a quantitative trait. More recent methods have been targeted to provide a comprehensive inference on the overall genetic architecture of multiple traits in a number of environments. This development is important for evolutionary studies on the genetic basis of multiple trait variation, genotype by environment interaction, host–parasite interaction, and also microarray gene expression QTL analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CIM:

composite interval mapping

EM:

expectation and maximization algorithm

IM:

interval mapping

MIM:

multiple interval mapping

QTL:

quantitative trait loci

References

  • Basten, C., B.S. Weir & Z.-B. Zeng, 1995–2004. QTL Cartographer. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/cartographer.html).

  • R.B. Brem G. Yvert R. Clinton L. Kruglyak (2002) ArticleTitleGenetic dissection of transcriptional regulation in budding yeast Science 296 752–755 Occurrence Handle10.1126/science.1069516 Occurrence Handle1:CAS:528:DC%2BD38XjtlOnt70%3D Occurrence Handle11923494

    Article  CAS  PubMed  Google Scholar 

  • K.W. Broman T.P. Speed (2002) ArticleTitleA model selection approach for the identification of quantitative trait loci in experimental crosses J. R. Stat. Soc. B 64 641–656

    Google Scholar 

  • O. Carlborg L. Andersson B. Kinghorn (2000) ArticleTitleThe use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci Genetics 155 2003–2010

    Google Scholar 

  • I.A. Eaves L.S. Wicker G. Ghandour P.A. Lyons L.B. Peterson J.A. Todd R.J. Glynne (2002) ArticleTitleCombining mouse congenic strains and microarray gene expression analyses to study a complex trait: the NOD model of Type 1 diabetes Genome Res. 12 232–243

    Google Scholar 

  • D.S. Falconer (1952) ArticleTitleThe problem of environment and selection Am. Nat. 86 293–298

    Google Scholar 

  • C. Jiang Z.-B. Zeng (1995) ArticleTitleMultiple trait analysis of genetic mapping for quantitative trait loci Genetics 140 1111–1127 Occurrence Handle1:CAS:528:DyaK28Xht1Gjur4%3D Occurrence Handle7672582

    CAS  PubMed  Google Scholar 

  • C. Jiang Z.-B. Zeng (1997) ArticleTitleMapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines Genetica 101 47–58

    Google Scholar 

  • C.-H. Kao Z.-B. Zeng (1997) ArticleTitleGeneral formulae for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm Biometrics 53 653–665

    Google Scholar 

  • C.-H. Kao Z.-B. Zeng R. Teasdale (1999) ArticleTitleMultiple interval mapping for quantitative trait loci Genetics 152 1023–1216

    Google Scholar 

  • E.S. Lander D. Botstein (1989) ArticleTitleMapping Mendelian factors underlying quantitative traits using RFLP linkage maps Genetics 121 185–199 Occurrence Handle1:STN:280:BiaC3sjpsVw%3D Occurrence Handle2563713

    CAS  PubMed  Google Scholar 

  • J. Liu J.M. Mercer L.F. Stam G.C. Gibson Z.-B. Zeng C.C. Laurie (1996) ArticleTitleGenetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana Genetics 142 1129–1145

    Google Scholar 

  • R. Nakamichi Y. Ukai H. Kishino (2001) ArticleTitleDetection of closely linked multiple quantitative trait loci using a genetic algorithm Genetics 158 463–475

    Google Scholar 

  • T.F.C. Mackay (2001) ArticleTitleQuantitative trait loci in Drosophila Nat. Rev. Genet. 2 11–20

    Google Scholar 

  • R. Mauricio (2001) ArticleTitleMapping quantitative trait loci in plants: uses and caveats for evolutionary biology Nat. Rev. Genet. 2 370–381

    Google Scholar 

  • J.M. Satagopan B.S. Yandell M.A. Newton T.C. Osborn (1996) ArticleTitleA Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo Genetics 144 805–816

    Google Scholar 

  • E.E. Schadt S.A. Monks T.A. Drake A.J. Lusis N. Che V. Colinayo T.G. Ruff S.B. Milligan J.R. Lamb G. Cavet P.S. Linsley M. Mao R.B. Stoughton S.H. Friend (2003) ArticleTitleGenetics of gene expression surveyed in maize, mouse and man Nature 422 297–302 Occurrence Handle10.1038/nature01434 Occurrence Handle1:CAS:528:DC%2BD3sXitFKmuro%3D Occurrence Handle12646919

    Article  CAS  PubMed  Google Scholar 

  • S. Sen G.A. Churchill (2001) ArticleTitleA statistical framework for quantitative trait mapping Genetics 159 371–387 Occurrence Handle1:STN:280:DC%2BD3MrhtlShsA%3D%3D Occurrence Handle11560912

    CAS  PubMed  Google Scholar 

  • M.J. Sillanpaa E. Arjas (1998) ArticleTitleBayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data Genetics 148 1373–1388

    Google Scholar 

  • Wang, S., C. Basten & Z-.B Zeng, 1999–2004. WINDOWS QTL Cartographer. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/cartographer.html).

  • K.E. Weber (1990) ArticleTitleSelection on wing allometry in Drosophila melanogaster Genetics 126 975–989

    Google Scholar 

  • K. Weber R. Eisman S. Higgins L. Morey A. Patty M. Tausek Z.-B. Zeng (2001) ArticleTitleAn analysis of polygenes affecting wing shape on chromosome 2 in Drosophila melanogaster Genetics 159 1045–1057

    Google Scholar 

  • K. Weber R. Eisman L. Morey A. Patty J. Sparks M. Tausek Z.-B. Zeng (1999) ArticleTitleAn analysis of polygenes affecting wing shape on chromosome 3 in Drosophila melanogaster Genetics 153 773–786

    Google Scholar 

  • Z.-B. Zeng (1994) ArticleTitlePrecision mapping of quantitative trait loci Genetics 136 1457–1468 Occurrence Handle1:CAS:528:DyaK2MXhtFantw%3D%3D Occurrence Handle8013918

    CAS  PubMed  Google Scholar 

  • Z.-B. Zeng C.-H. Kao C.J. Basten (1999) ArticleTitleEstimating the genetic architecture of quantitative traits Genet. Res. 74 279–289

    Google Scholar 

  • Z.-B. Zeng J. Liu L.F. Stam C.-H. Kao J.M. Mercer C.C. Laurie (2000) ArticleTitleGenetic architecture of a morphological shape difference between two Drosophila species Genetics 154 299–310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Bang Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, ZB. QTL mapping and the genetic basis of adaptation: recent developments. Genetica 123, 25–37 (2005). https://doi.org/10.1007/s10709-004-2705-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-004-2705-0

Keywords

Navigation