Skip to main content
Log in

Understanding evolution of maritime networks from automatic identification system data

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Recent studies on maritime traffic model the interplay between vessels and ports as a graph, which is often built using automatic identification system (AIS) data. However, only a few works explicitly study the evolution of such graphs and, when they do, generally consider coarse-grained time intervals. Our goal is to fill this gap by providing a conceptual framework for the fine-grained systematic study of maritime graphs evolution. To this end, this paper presents the month-by-month analysis of world-wide graphs built using a 3-years AIS dataset. The analysis focuses on the evolution of several topological graph features, as well as their stationarity and statistical correlation. Results have revealed some interesting seasonal and trending patterns that can provide insights in the world-wide maritime context and be used as building blocks toward the prediction of graphs topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. https://www.exactearth.com/products/exactais

  2. https://help.marinetraffic.com/

References

  1. Zar JH (2008) Spearman Rank Correlation Coefficient. Springer, New York, pp 502–505. https://doi.org/10.1007/978-0-387-32833-1_379

    Google Scholar 

  2. Bartholdi JJ, Jarumaneeroj P, Ramudhin A (2016) A new connectivity index for container ports. Maritime Econ Logist 18(3):231–249

    Google Scholar 

  3. Blake GH (2004) Maritime boundaries. In: The oceans: Key issues in marine affairs. Springer, pp 63–76

  4. Brockwell PJ, Davis RA (2016) Introduction to time series and forecasting. Springer, Berlin

    Book  Google Scholar 

  5. Carlini E, de Lira VM, Soares A, Etemad M, Machado BB, Matwin S (2020) Uncovering vessel movement patterns from ais data with graph evolution analysis. In: EDBT/ICDT Workshops

  6. Cavaliere G, Robert Taylor A (2008) Time-transformed unit root tests for models with non-stationary volatility. J Time Ser Anal 29(2):300–330

    Article  MathSciNet  Google Scholar 

  7. Chatfield C (2000) Time-series forecasting. Chapman and hall/CRC, Boca Raton

    Google Scholar 

  8. Cheung YW, Lai KS (1995) Lag order and critical values of the augmented dickey–fuller test. J Business Econ Stat 13(3):277–280

    Google Scholar 

  9. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) Stl: a seasonal-trend decomposition. J Official Stat 6(1):3–73

    Google Scholar 

  10. Coscia P, Braca P, Millefiori LM, Palmieri FAN, Willett P (2018) Multiple Ornstein–Uhlenbeck Processes for Maritime Traffic Graph Representation. IEEE Trans Aerospace Electron Syst 54(5):2158–2170. https://doi.org/10.1109/TAES.2018.2808098. https://ieeexplore.ieee.org/document/8295117/

    Article  Google Scholar 

  11. Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Amer Stat Assoc 74(366a):427–431

    Article  MathSciNet  Google Scholar 

  12. Ducruet C (2017) Multilayer dynamics of complex spatial networks: The case of global maritime flows (1977–2008). J Transp Geogr 60:47–58

    Article  Google Scholar 

  13. Edition SC (2004) Safety of life at sea (solas), consolidated edition. IMO, London

    Google Scholar 

  14. Etemad M, Júnior A. S., Matwin S (2018) Predicting transportation modes of gps trajectories using feature engineering and noise removal. In: Canadian conference on artificial intelligence. Springer, pp 259–264

  15. Ford JH (2020) ExactEarth. https://www.exactearth.com/. last accessed: September 2021

  16. Fagiolo G, Mastrorillo M (2013) International migration network: Topology and modeling. Phys Rev E 88(1):012,812

    Article  Google Scholar 

  17. Filipiak D, We K, Abramowicz W (2020) Extracting maritime traffic networks from AIS data using evolutionary algorithm. Bus Inf Syst Eng 17

  18. Franses PH (1991) Seasonality, non-stationarity and the forecasting of monthly time series. Int J Forecast 7(2):199–208

    Article  Google Scholar 

  19. Ghanavati G, Hines PD, Lakoba TI, Cotilla-Sanchez E (2014) Understanding early indicators of critical transitions in power systems from autocorrelation functions. IEEE Trans Circ Syst I: Regular Papers 61(9):2747–2760

    MathSciNet  MATH  Google Scholar 

  20. Gollasch S, Hewitt CL, Bailey S, David M (2019) Introductions and transfers of species by ballast water in the adriatic sea. Marine Poll Bull 147:8–15. https://doi.org/10.1016/j.marpolbul.2018.08.054. http://www.sciencedirect.com/science/article/pii/S0025326X1830626X

    Article  Google Scholar 

  21. Hernández JM, Van Mieghem P (2011) Classification of graph metrics. Delft University of Technology, The Netherlands, pp 1–20

    Google Scholar 

  22. Kaluza P, Kölzsch A, Gastner MT, Blasius B (2010) The complex network of global cargo ship movements. J R Soc Interface 7(48):1093–1103

    Article  Google Scholar 

  23. Kirch W. (ed) (2008) Pearson’s Correlation Coefficient. Springer, Netherlands. https://doi.org/10.1007/978-1-4020-5614-7_2569

  24. Kitagawa G, Akaike H (1978) A procedure for the modeling of non-stationary time series. Ann Inst Stat Math 30(2):351–363

    Article  Google Scholar 

  25. Kosowska-Stamirowska Z, Ducruet C, Rai N (2016) Evolving structure of the maritime trade network: evidence from the lloyd’s shipping index (1890–2000). J Shipp Trade 1(1):10

    Article  Google Scholar 

  26. Laxe FG, Seoane MJF, Montes CP (2012) Maritime degree, centrality and vulnerability: port hierarchies and emerging areas in containerized transport (2008–2010). J Transp Geogr 24:33–44

    Article  Google Scholar 

  27. McCabe BP, Tremayne AR (1995) Testing a time series for difference stationarity. The Annals Stat 1015–1028

  28. Montes CP, Seoane MJF, Laxe FG (2012) General cargo and containership emergent routes: a complex networks description. Transp Policy 24:126–140

    Article  Google Scholar 

  29. Pham KH, Miguel L-O (2020) World Port Index. https://msi.nga.mil/Publications/WPI. last accessed: September 2021

  30. Perera LP, Oliveira P, Soares CG (2012) Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction. IEEE Trans Intell Transp Syst 13(3):1188–1200

    Article  Google Scholar 

  31. Santipantakis GM, Glenis A, Patroumpas K., Vlachou A, Doulkeridis C, Vouros GA, Pelekis N, Theodoridis Y (2020) SPARTAN: Semantic integration of big spatio-temporal data from streaming and archival sources. Future Gener Comput Syst 110:540–555. https://doi.org/10.1016/j.future.2018.07.007. https://linkinghub.elsevier.com/retrieve/pii/S0167739X17320319

    Article  Google Scholar 

  32. Soares A, Dividino R, Abreu F, Brousseau M, Isenor AW, Webb S, Matwin S (2019) Crisis: Integrating ais and ocean data streams using semantic web standards for event detection. In: 2019 International conference on military communications and information systems (ICMCIS). IEEE, pp 1–7

  33. Varlamis I, Kontopoulos I, Tserpes K, Etemad M, Soares A, Matwin S (2020) Building navigation networks from multi-vessel trajectory data. GeoInformatica 1–29

  34. Varlamis I, Tserpes K, Etemad M, Júnior AS, Matwin S (2019) A network abstraction of multi-vessel trajectory data for detecting anomalies. In: Proceedings of the Workshops of the EDBT/ICDT 2019 Joint Conference

  35. Vespe M, Greidanus H, Alvarez MA (2015) The declining impact of piracy on maritime transport in the indian ocean: Statistical analysis of 5-year vessel tracking data. Mar Policy 59:9–15

    Article  Google Scholar 

  36. Vespe M, Visentini I, Bryan K, Braca P (2012) Unsupervised learning of maritime traffic patterns for anomaly detection. In: 9Th IET data fusion target tracking conference (DF TT 2012): Algorithms applications, pp 1–5

  37. Wang Z, Claramunt C, Wang Y (2019) Extracting global shipping networks from massive historical automatic identification system sensor data: a bottom-up approach. Sensors 19(15):3363

    Article  Google Scholar 

  38. Yan Z, Xiao Y, Cheng L, He R, Ruan X, Zhou X, Li M, Bin R (2020) Exploring ais data for intelligent maritime routes extraction. Appl Ocean Res 101(102):271

    Google Scholar 

  39. Zhang SK, Shi GY, Liu ZJ, Zhao ZW, Wu ZL (2018) Data-driven based automatic maritime routing from massive ais trajectories in the face of disparity. Ocean Eng 155:240–250

    Article  Google Scholar 

  40. Zissis D, Chatzikokolakis K, Spiliopoulos G, Vodas M (2020) A distributed spatial method for modeling maritime routes. IEEE Access 8:47,556–47,568. https://doi.org/10.1109/ACCESS.2020.2979612. https://ieeexplore.ieee.org/document/9028151/

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the support of the H2020 EU Project MASTER (Multiple ASpects TrajEctoRy management and analysis) funded under the Marie Skłodowska-Curie grant agreement No 777695.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Carlini.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlini, E., de Lira, V., Soares, A. et al. Understanding evolution of maritime networks from automatic identification system data. Geoinformatica 26, 479–503 (2022). https://doi.org/10.1007/s10707-021-00451-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-021-00451-0

Keywords

Navigation