Skip to main content
Log in

Flexural Analysis in Dynamic Pinned Head Pile Testing

  • Original paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

A Laplace transform is used to solve the problem of the steady state and transient response of a pinned head pile embedded into a viscoelastic Winkler soil medium. The pile is modeled as an Euler–Bernoulli beam while the soil medium is modeled using a Winkler subgrade approach. Two analytical solutions are developed to specifically address both steady state and transient loads encountered during dynamic pile testing. After choosing a proper contour integration in the complex plane, inverse integration is evaluated. The steady state solutions are associated to the residues of the integration around the poles while the transient solutions are associated to the integration paths along the contour integration. The derived solutions are applied to a case history for which results of dynamic pile tests are available. Dynamic pile flexion is generated by delivering eccentric impact using a dynamic loading test module. Validity of the proposed solution is discussed basing on geotechnical campaign and recorded pile head bending moment and rotation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Allani M, Holeyman A (2013) Numerical evaluation of effects of non-linear lateral pile vibration on the non-linear axial response of a pile shaft. Soil Found 53(3):395–407

    Article  Google Scholar 

  • Charue N (2004) Loading rate effects on pile load-displacement behaviour derived from back calculation analysis of two load testing procedure. Ph.D thesis, Université Catholique de Louvain

  • Chau KT, Yang X (2005) Nonlinear interaction of pile-soil in horizontal vibration. J Eng Mech (ACSE) 131(8):847–858

    Article  Google Scholar 

  • Dobry R, Vicente E, O’Rourke MJ, Roesset J (1982) Horizontal stiffness and damping of single pile. J Geotech Eng (ASCE) 108(3):439–459

    Google Scholar 

  • Goble GG (2000) Keynote lecture: some wave mechanics applications. In: Proceedings of the sixth international conference on the application of stress waves theory to piles, Sao Paulo, Brazil, pp 3–9

  • Holeyman A (1984) Contribution à l’étude du comportement dynamique non-linéaire des pieux lors de leur battage. Ph.D thesis, Université livre de Bruxelles

  • Holeyman AE (1992) Keynote lecture: technology of pile dynamic testing. In: Proceedings of the fourth international conference on the application of stress waves theory to piles, The Hague, The Netherlands, pp 195–215

  • Holeyman A, Bertin R, Whenham V (2013) Impedance of pile shaft under axial vibratory loads. Soil Dynamic Earthq Eng 44:115–126

    Article  Google Scholar 

  • Jiang J, Zhou X, Zhang J (2007) Dynamic interaction factor considering axial load. J Geotech Geol Eng 25(4):423–429

    Article  Google Scholar 

  • Markis N, Gazetas G (1993) Displacement phase differences in a harmonically oscillating pile. Geotechnique 43(1):135–150

    Article  Google Scholar 

  • Michaelides O, Gazetas G, Bouckovalas G, Chrysikou E (1997) Approximate non-linear dynamic axial response of piles. Géotechnique 48(4):33–53

    Google Scholar 

  • Michaelides O, Bouckovalas G, Gazetas G (1998) Non-linear soil properties and impedances for axially vibrating elements. J Jpn Geotech Soc Soil Foundation 38(3):129–142

    Article  Google Scholar 

  • Nogami T, Novak M (1977) Resistance of soil to a horizontally vibrating pile. Earthquake Eng Struct Dynamics 5(3):249–261

    Article  Google Scholar 

  • Novak M (1974) Dynamic stiffness and damping of piles. Can Geotech J 11(4):574–598

    Article  Google Scholar 

  • Novak M, Nogami T (1977) Soil-pile interaction in horizontal vibration. Earthq Eng Struct Dynamics 5(3):263–281

    Article  Google Scholar 

  • Novak M, Nogami T, Abdou-Ella F (1978) Dynamic soil reactions for plane strain case. J Mech Eng Div 104(4):953–959

    Google Scholar 

  • Poskitt TJ (1991) Energy loses in pile driving due to soil rate effects and hammer misalignment. Proc Inst Civil Eng 91(4):823–851

    Article  Google Scholar 

  • Poskitt TJ (1992) Keynote lecture: problems of reconciling stress wave measurements with theory. In: Proceedings of the fourth international conference on the application of stress waves theory to piles. The Hague, The Netherlands, pp 495–507

  • Rausche F, Liang L (2000) Automatic signal matching with CAPWAP In: Proceedings of the sixth international conference on the application of stress waves theory to piles, Sao Paulo, Brazil, pp 53–58.

  • Rausche F, Goble GG, Likins GE (1985) Dynamic determination of pile capacity. J Geotech Eng 111(3):367–383

    Article  Google Scholar 

  • Rausche F, Goble GG, Likins GE. (1992) Investigation of dynamic soil resistance on piles using GRLWEAP. In: Proceedings of the fourth international conference on the application of stress waves theory to piles, The Hague, The Netherlands, pp 137–1421

  • Smith EAL (1960) Pile driving analysis by the wave equation. J Soil Mech Foundation 86(4):35–61

    Google Scholar 

  • VanAlboom G and Whenham V (2003) Soil investigation campaign at Limelette (Belgium) Results. In: Swts and Zeitlinger (eds) Proceeding of the symposium on screw piles in sand. Design and recent development

  • Yao S, Nogami T (1994) Lateral cyclic response of pile in viscoelastic Winkler subgrade. J Eng Mech 120(4):775–785

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malek Allani.

Appendices

Appendix 1: Expressions of Integrals I2, I3 and I4

The point \(S_{1} = - \frac{k}{c} < 0\) is a branch point. Thus, the integrant around the branch point is calculated by replacing s by \(s = - \frac{k}{c} + re^{i\theta }\):

$$I_{2} = \mathop {\lim }\limits_{r \mapsto 0} \frac{{M_{0} }}{\pi }\int\limits_{ - \pi }^{\pi } {\frac{{\beta^{2} \sin (\beta z)e^{ - \beta z} }}{{ - \left( {\frac{k}{c} + re^{i\theta } + iw} \right)c}}\theta d\theta } = 0$$

where

$$\beta = \sqrt{\frac{rc}{4EI}} e^{{i\frac{\theta }{4}}}$$

For the integration paths p and q, s is replaced with \(s = - \frac{k}{c} + qe^{i\pi }\) and \(s = - \frac{k}{c} + qe^{ - i\pi }\) respectively:

$$I_{3} = \frac{{M_{0} }}{\pi i}\int\limits_{0}^{ + \infty } {\frac{{\beta^{2} \sin (\beta z)e^{ - \beta z} }}{{qc\left( {\frac{k}{c} + q + iw} \right)}}} e^{{\left( { - \frac{k}{c} + qe^{i\pi } } \right)t}} dq$$

where

$$\beta = \sqrt{\frac{qc}{4EI}} e^{{i\frac{\pi }{4}}}$$

and:

$$I_{4} = \frac{{M_{0} }}{\pi i}\int\limits_{0}^{ + \infty } {\frac{{\beta^{2} \sin (\beta z)e^{ - \beta z} }}{{qc\left( {\frac{k}{c} + q + iw} \right)}}} e^{{\left( { - \frac{k}{c} + qe^{ - i\pi } } \right)t}} dq$$

where

$$\beta = \sqrt{\frac{qc}{4EI}} e^{{ - i\frac{\pi }{4}}}$$

Appendix 2: Expressions of Integrals I5, I6, I7, I8, I9, I10 and I11

The residue of the pole is:

$$I_{5} = 2M_{0} \frac{{\sqrt{k/(4EI)} \sin (\root{4} \of {k/(4EI)}z)e^{{ - \root{4} \of {{k/\left( {4EI} \right)s}}}} }}{k}$$

The integration around branch points S 2 and S 3 is evaluated by considering the circle of radius r and by replacing s in Eq. (16) by re and −k/c + re respectively:

$$I_{6} = \mathop {\lim }\limits_{r \mapsto 0} \frac{{M_{0} }}{\pi }\int\limits_{ - \pi }^{0} {\frac{{\beta^{2} \sin (\beta z)e^{ - (\beta )z} }}{{( - k/c + re^{i\theta } )c}}e^{{\left( { - \frac{k}{c} + re^{i\theta } } \right)t}} \theta d\theta } = 0$$
$$I_{7} = \mathop {\lim }\limits_{r \mapsto 0} \frac{{M_{0} }}{\pi }\int\limits_{0}^{\pi } {\frac{{\beta^{2} \sin (\beta z)e^{ - \beta z} }}{{( - k/c + re^{i\theta } )c}}e^{{\left( { - \frac{k}{c} + re^{i\theta } } \right)t}} \theta d\theta } = 0$$

where \(\beta = \sqrt{\frac{rc}{4EI}} e^{{i\frac{\theta }{4}}}\)

For the integration paths A B, s is replaced by s = qe however for the integration paths C and D, s is replaced by s = qe respectively:

$$I_{8} = \frac{{M_{0} }}{\pi i}\int\limits_{k/c}^{ + \infty } {\frac{{\beta^{2} \sin (\beta z)e^{ - \beta z} }}{(k + sc)s}e^{{qe^{i\pi } t}} dq}$$

where

$$\beta = \root{4} \of {{\frac{ - (k - qc)}{4EI}}}e^{{ - i\frac{\pi }{4}}}$$

where

$$I_{9} = \frac{{M_{0} }}{\pi i}\int\limits_{0}^{k/c} {\frac{{\beta^{2} \sin (\beta z)e^{ - \beta z} }}{(k + sc)s}e^{{qe^{i\pi } t}} dq}$$
$$\beta = \root{4} \of {{\frac{k - qc}{4EI}}}$$
$$I_{10} = \frac{{M_{0} }}{\pi i}\int\limits_{0}^{k/c} {\frac{{\beta^{2} \sin (\beta z)e^{ - \beta z} }}{(k + sc)s}e^{{qe^{ - i\pi } t}} dq}$$

where

$$\beta = \root{4} \of {{\frac{k - qc}{4EI}}}e^{{i\frac{\pi }{2}}}$$
$$I_{11} = \frac{{M_{0} }}{\pi i}\int\limits_{k/c}^{ + \infty } {\frac{{\beta^{2} \sin (\beta z)e^{ - \beta z} }}{(k + sc)s}e^{{qe^{ - i\pi } t}} dq}$$

where

$$\beta = \sqrt{\frac{ - (k - qc)}{4EI}} e^{{i\frac{\pi }{4}}}$$

Appendix 3: Expressions of the Functions of Fi

$$F1(z) = \frac{{e^{(B - A)z} }}{2}\sin \left( {\left( {A + B} \right)z} \right) + \frac{{e^{ - (B + A)z} }}{2}\sin \left( {\left( {A - B} \right)z} \right)$$
$$F2(z) = - \frac{{e^{(B - A)z} }}{2}\cos ((A + B)z) + \frac{{e^{ - (B + A)z} }}{2}\cos ((A - B)z)$$
$$F3(z) = \frac{{e^{(B - A)z} }}{2}\left[ {\cos ((A + B)z - \varphi /4) - \sin \left( {\left( {A + B} \right)z - \varphi /4} \right) + \frac{{e^{ - (B + A)z} }}{2}\left[ {\cos \left( {\left( {A - B} \right)z + \varphi /4} \right) - \sin \left( {\left( {A - B} \right)z + \varphi /4} \right)} \right]} \right.$$
$$F4(z) = F3(z) = \frac{{e^{(B - A)z} }}{2}[\cos ((A + B)z - \varphi /4) + \sin ((A + B)z - \varphi /4) - \frac{{e^{ - (B + A)z} }}{2}[\cos ((A - B)z + \varphi /4) + \sin ((A - B)z + \varphi /4)]$$
$$F5(z) = \frac{{e^{(B - A)z} }}{2}\cos ((A + B)z - \varphi /2) + \frac{{e^{ - (B + A)z} }}{2}\cos ((A - B)z - \varphi /2)$$
$$F6(z) = - \frac{{e^{(B - A)z} }}{2}\sin ((A + B)z - \varphi /2) + \frac{{e^{ - (B + A)z} }}{2}\sin ((A - B)z + \varphi /2)$$
$$F7(z) = \frac{{e^{(B - A)z} }}{2}\sin ((A + B)z) + \frac{{e^{ - (B + A)z} }}{2}\sin ((A - B)z)$$
$$F8(z) = - \frac{{e^{(B - A)z} }}{2}\cos ((A + B)z) + \frac{{e^{ - (B + A)z} }}{2}\cos ((A - B)z)$$

where \(A = \root{4} \of {r}(\cos (\phi /4)\) and \(B = \root{4} \of {r}(\sin (\phi /4)\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allani, M., Holeyman, A. Flexural Analysis in Dynamic Pinned Head Pile Testing. Geotech Geol Eng 32, 59–70 (2014). https://doi.org/10.1007/s10706-013-9691-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-013-9691-x

Keywords

Navigation