Skip to main content

Advertisement

Log in

Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Forest conversion to agriculture and grassland has been widespread in south-eastern Mexico. The productivity, functioning and carbon dynamics of secondary forests growing after abandonment of agricultural fields are expected to differ from those of primary forests. This study analysed whether forest age and seasonal variations affect the amount and temporal distribution of litterfall and associated nutrient transfer. Litterfall was measured across a chronosequence of semi-evergreen tropical forest in Calakmul, Yucatan peninsula, Mexico, and an index was created to evaluate the effect of land use intensity on litterfall collected in 16 stands from October 2012 to September 2014. Total litterfall ranged from 5.2 ± 0.6 to 7.1 ± 0.3 Mg ha−1 year−1 and peaked in secondary forest aged 10–20 years. Leaves contributed 84–91 % of total litterfall. The associated transfer of carbon ranged from 2.3 ± 0.3 to 3.2 ± 0.1 Mg ha−1 year−1 and of nitrogen from 62 ± 7 to 84 ± 4 kg ha−1 year−1. Carbon and nutrient accumulation in the organic horizon (Oa) increased significantly with forest age. However, carbon in mineral soil (down to 0.30 m depth) did not increase over time. Peaks in monthly litterfall coincided with the dry season, with higher peaks in a year with lower rainfall in the dry season. Peaks were also higher in secondary forests than in primary forests, due to changes in species composition. Higher land use intensity reduced carbon and nutrient transfer through litter in regenerating secondary forests. Longer-term research is required to analyse the climate sensitivity of litter dynamics in these tropical forest frontiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aryal DR, Geissen V, Ponce-Mendoza A et al (2012) Water quality under intensive banana production and extensive pastureland in tropical Mexico. J Plant Nutr Soil Sci 175:553–559

    Article  CAS  Google Scholar 

  • Aryal DR, De Jong BH, Ochoa-Gaona S et al (2014) Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric Ecosyst Environ 195:220–230

    Article  Google Scholar 

  • Balvanera P, Aguirre E (2006) Tree diversity, environmental heterogeneity, and productivity in a Mexican Tropical Dry Forest. Biotropica 38:479–491

    Article  Google Scholar 

  • Bautista F, Palacio-Aponte G, Quintana P, Zinck JA (2011) Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Driv Forces Glob Pedodiversity 135:308–321. doi:10.1016/j.geomorph.2011.02.014

    Google Scholar 

  • Bejarano M, Crosby MM, Parra V et al (2014) Precipitation regime and nitrogen addition effects on leaf litter decomposition in tropical dry forests. Biotropica 46:415–424

    Article  Google Scholar 

  • Bradford JB, Birdsey RA, Joyce LA, Ryan MG (2008) Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests. Glob Change Biol 14:2882–2897

    Article  Google Scholar 

  • Bray JR, Gorham E (1964) Litter production in forests of the world. In: Cragg JB (ed) Advances in ecological research. Academic Press, London, pp 101–157

    Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen total. Methods of soil analysis part 2. Chemical and microbiological properties. Agron Monogr 9(2):595–624

    Google Scholar 

  • Brown S, Lugo AE (1990) Tropical secondary forests. J Trop Ecol 6:1–32. doi:10.2307/2559366

    Article  Google Scholar 

  • Chapin FS III, Eviner VT (2005) Primary production. Biogeochemistry 8:215

    Google Scholar 

  • Chapin FS III, Chapin MC, Matson PA, Vitousek P (2011) Principles of terrestrial ecosystem ecology. Springer, Berlin

    Google Scholar 

  • Chave J, Navarette D, Almeida S, Álvarez E, Aragão LEOC, Bonal D, Châtelet P, Silva-Esperjo JE, Goret JY, von Hildebrand P, Jiménez E, Patiño S, Peñuela MC, Ol Phillips, Stevenson P, Malhi Y (2010) Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7:43–55

    Article  Google Scholar 

  • Chazdon RL (2014) Second growth: the promise of tropical forest regeneration in an age of deforestation. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Cuba N, Rogan J, Christman Z et al (2013) Modelling dry season deciduousness in Mexican Yucatán forest using MODIS EVI data (2000–2011). GIScience Remote Sens 50:26–49

    Google Scholar 

  • Cuevas E, Medina E (1986) Nutrient dynamics within Amazonian forest ecosystems. Oecologia 68:466–472

    Article  Google Scholar 

  • David DJ (1960) The determination of exchangeable sodium, potassium, calcium and magnesium in soils by atomic-absorption spectrophotometry. Analyst 85:495–503

    Article  CAS  Google Scholar 

  • De Jong BHJ (2013) Spatial distribution of biomass and links to reported disturbances in tropical lowland forests of southern Mexico. Carbon Manag 4:601–615

    Article  Google Scholar 

  • De Jong BH, Ochoa-Gaona S, Castillo-Santiago MA et al (2000) Carbon flux and patterns of land-use/land-cover change in the Selva Lacandona, Mexico. AMBIO J Hum Environ 29:504–511

    Article  Google Scholar 

  • Dent DH, Bagchi R, Robinson D et al (2006) Nutrient fluxes via litterfall and leaf litter decomposition vary across a gradient of soil nutrient supply in a lowland tropical rain forest. Plant Soil 288:197–215

    Article  CAS  Google Scholar 

  • Dickinson CH (2012) Biology of plant litter decomposition. Elsevier, Amsterdam

    Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In Doran et al. (eds) Defining soil quality for a sustainable environment. Soil Science Society of America special publication no. 35, Madison, pp 3–21

    Google Scholar 

  • Ewel JJ (1976) Litter fall and leaf decomposition in a tropical forest succession in eastern Guatemala. J Ecol 64:293–308

    Article  CAS  Google Scholar 

  • Feldpausch TR, Riha SJ, Fernandes ECM, Wandelli EV (2005) Development of forest structure and leaf area in secondary forests regenerating on abandoned pastures in Central Amazônia. Earth Interactions 9, Paper 6, p 22

  • García E (1973) Modificaciones al Sistema de Clasificación Climática de Köppen. Instituto de Geografía, UNAM, México D.F

  • Harmon ME, Whigham DF, Sexton J, Olmsted I (1995) Decomposition and mass of woody detritus in the dry tropical forests of the northeastern Yucatan Peninsula, Mexico. Biotropica 27:305–316

    Article  Google Scholar 

  • Keiser AD, Knoepp JD, Bradford MA (2013) Microbial communities may modify how litter quality affects potential decomposition rates as tree species migrate. Plant Soil 372:167–176

    Article  CAS  Google Scholar 

  • Landon JR (2014) Booker tropical soil manual: a handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Routledge

  • Lawrence D (2005) Regional-scale variation in litter production and seasonality in tropical dry forests of Southern Mexico1. Biotropica 37:561–570

    Article  Google Scholar 

  • Malhi Y (2012) The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol 100:65–75

    Article  CAS  Google Scholar 

  • Martínez E, Galindo-Leal C (2002) La vegetación de Calakmul, Campeche, México: clasificación, descripción y distribución. Bol Soc Botánica México 71:7–32

    Google Scholar 

  • Martinez-Yrizar A, Sarukhan J (1990) Litterfall patterns in a tropical deciduous forest in Mexico over a five-year period. J Trop Ecol 6:433–444

    Article  Google Scholar 

  • Martius C, Höfer H, Garcia MV et al (2004) Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia. Nutr Cycl Agroecosystems 68:137–154

    Article  CAS  Google Scholar 

  • Medina E, Cuevas E (1996) Biomass production and accumulation in nutrient-limited rain forest: implications for responses to global change. In Gash et al. (eds) Amazonian Deforestation and Climate. Chichester, pp 221–239

  • Meentemeyer V, Box EO, Thompson R (1982) World patterns and amounts of terrestrial plant litter production. Bioscience 32:125–128. doi:10.2307/1308565

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW et al (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  CAS  Google Scholar 

  • Moheno MB (2008) Forest recovery and management options in the Yucatan Peninsula, Mexico. ProQuest, Ann Arbor

    Google Scholar 

  • Montagnini F, Ramstad K, Sancho F (1993) Litterfall, litter decomposition and the use of mulch of four indigenous tree species in the Atlantic lowlands of Costa Rica. Agrofor Syst 23:39–61

    Article  Google Scholar 

  • Moraes R, Dellitti WBC, Struffaldi Y (1999) Litterfall and litter nutrient content in two Brazilian Tropical Forests. Braz J Bot 22:09–16

    Article  Google Scholar 

  • Negash M, Starr M (2013) Litterfall production and associated carbon and nitrogen fluxes of seven woody species grown in indigenous agroforestry systems in the south-eastern Rift Valley escarpment of Ethiopia. Nutr Cycl Agroecosystems 97:29–41

    Article  CAS  Google Scholar 

  • Norris MD, Avis PG, Reich PB, Hobbie SE (2013) Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients. Plant Soil 367:347–361

    Article  CAS  Google Scholar 

  • Ochoa-Gaona S, Hernández-Vázquez F, De Jong BHJ, Gurri-García FD (2007) Pérdida de diversidad florística ante un gradiente de intensificación del sistema agrícola de roza-tumba-quema: un estudio de caso en la Selva Lacandona, Chiapas, México. Bol Soc Botánica México 81:67–82

    Google Scholar 

  • Ochoa-Gaona S, Pérez Hernández I, De Jong BH (2008) Fenología reproductiva de las especies arbóreas del bosque tropical de Tenosique, Tabasco, México. Rev Biol Trop 56:657–673

    PubMed  Google Scholar 

  • Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, Washington. Circular 939. https://ia801703.us.archive.org/17/items/estimationofavai939olse/estimationofavai939olse.pdf

  • Orihuela-Belmonte DE, De Jong BHJ, Mendoza-Vega J, Van der Wal J, Paz-Pellat F, Soto-Pinto L, Flamenco-Sandoval A (2013) Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric Ecosyst Environ 171:72–84

    Article  Google Scholar 

  • Ostertag R, Marín-Spiotta E, Silver WL, Schulten J (2008) Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems 11:701–714. doi:10.2307/40296320

    Article  CAS  Google Scholar 

  • Pérez-Salicrup D (2004) Forest types and their implications. In: Turner BL, Geoghegan J, Foster DR (eds) Integrated land change science and tropical deforestation in the southern Yucatán. Final fontiers. Oxford University Press, UK, pp 63–80

  • Read L, Lawrence D (2003) Litter nutrient dynamics during succession in dry tropical forests of the Yucatan: regional and seasonal effects. Ecosystems 6:747–761

    Article  CAS  Google Scholar 

  • Reyna-Hurtado R, Rojas-Flores E, Tanner GW (2009) Home range and habitat preferences of white-lipped peccaries (Tayassu pecari) in Calakmul, Campeche, Mexico. J Mammal 90:1199–1209

    Article  Google Scholar 

  • Rivera Vázquez R, Soto Pinto L, Núñez Colín CA et al (2013) Producción y tasa de descomposición de hojarasca en Acahuales de selva caducifolia en Chiapas. Rev Mex Cienc For 4:20–30

    Google Scholar 

  • Román-Dañobeytia FJ, Levy-Tacher SI, Macario-Mendoza P, Zúñiga-Morales J (2014) Redefining Secondary forests in the Mexican forest code: implications for management, restoration, and conservation. Forests 5:978–991

    Article  Google Scholar 

  • Rueda X (2010) Understanding deforestation in the southern Yucatán: insights from a sub-regional, multi-temporal analysis. Reg Environ Change 10:175–189

    Article  Google Scholar 

  • Rzedowski J (2006) Vegetación de México. 1ra. Edición digital, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, 504 pp. http://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMxPort.pdf

  • Scheer MB, Gatti G, Wisniewski C (2011) Nutrient fluxes in litterfall of a secondary successional alluvial rain forest in Southern Brazil. Rev Biol Trop 59:1869–1882

    PubMed  Google Scholar 

  • Schmook B, van Vliet N, Radel C et al (2013) Persistence of Swidden cultivation in the face of globalization: a case study from communities in Calakmul, Mexico. Hum Ecol 41:93–107

    Article  Google Scholar 

  • Shimadzu (2001) TOC-V CPH/CPN total organic carbon analyzer user’s manual. Shimadzu Corp. Process Environ. Instrum. Div, Kyoto, Japan

    Google Scholar 

  • Takyu M, Aiba S-I, Kitayama K (2003) Changes in biomass, productivity and decomposition along topographical gradients under different geological conditions in tropical lower montane forests on Mount Kinabalu, Borneo. Oecologia 134:397–404

    Article  PubMed  Google Scholar 

  • Thuille A, Schulze E-D (2006) Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob Change Biol 12:325–342

    Article  Google Scholar 

  • Turner BL, Geoghegan JM, Foster DR (eds) (2004) Integrated land-change science and tropical deforestation in the southern Yucatán: final frontiers. Oxford University Press, Oxford, New York

    Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298

    Article  CAS  Google Scholar 

  • Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests. Adv Ecol Res 15:303–377

    Article  Google Scholar 

  • Wang Q, Wang S, Fan B, Yu X (2007) Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: effect of planting conifers with broadleaved species. Plant Soil 297:201–211

    Article  CAS  Google Scholar 

  • Whigham DF, Zugasty-Towle P, Cabrera-Cano E, O'neill J, Ley E (1990) The effecto of annual variation in precipitation on growth and litter production in a tropical dry forest in the Yucatan of Mexico. Tropic Ecol 32:23–34

    Google Scholar 

  • Xuluc-Tolosa FJ, Vester HFM, Ramırez-Marcial N et al (2003) Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche, Mexico. For Ecol Manag 174:401–412

    Article  Google Scholar 

  • Young A (1997) Agroforestry for soil management. CAB international Wallingford, BPCC Wheatons Ltd, Exeter

    Google Scholar 

  • Zhou G, Guan L, Wei X, Zhang D. Zhang Q. Yan J, Wen D, Liu J, Liu S, Huang Z, Kong G, Mo J, Yu Q (2007) Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China. Plant Ecol 188:77–89

    Article  Google Scholar 

  • Zhou Y, Su J, Janssens IA et al (2014) Fine root and litterfall dynamics of three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant Soil 374:19–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is part of the doctoral thesis of the first author. We thank three anonymous reviewers for their very valuable comments on earlier versions of the paper. We also thank Mary McAfee for the editing of the text. Consejo Nacional de Ciencia y Tecnología (CONACyT) Mexico provided a scholarship for the first author. Additional financial assistance was received from the US Forest Service through federal grant 12-IJ-11242306-054. Ejido members in Cristobal Colon and El Carmen II allowed us to establish experimental plots on their land and made the commitment to not change these during the experiment, for which we are very grateful. Regular litter collection and drying in the field was performed by Antonio Ramirez and Demetrio Alvarez, whom we thank. ECOSUR provided financial support for field and laboratory work. Soil and litter mass samples were analysed in the soil fertility and environmental chemistry laboratory of Colegio de Posgraduados in Montecillo, Mexico. We also thank Eduardo Martinez, Noel Gonzalez, Edith Orihuela, Mirna Canul, Isidra Pérez, Victoria Hernandez and Beatriz Peña for their cooperation in field and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardus H. J. De Jong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryal, D.R., De Jong, B.H.J., Ochoa-Gaona, S. et al. Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutr Cycl Agroecosyst 103, 45–60 (2015). https://doi.org/10.1007/s10705-015-9719-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-015-9719-0

Keywords

Navigation