Skip to main content

Advertisement

Log in

How much do water deficits alter the nitrogen nutrition status of forage crops?

Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Water deficits alter the nitrogen nutrition of crops. In grasslands, this has a major impact on both forage yield and nitrogen fluxes in the soil. It is important to assess the N balance in order to adjust fertilization to the expected needs of the crop and thus minimize any environmentally negative impacts of crops. Grassland species, including grasses, display a diverse ability to utilise soil resources. Nitrogen fluxes and the nitrogen absorption by grass swards of two species with contrasting rooting depths were computed using the appropriate module from the STICS simulation platform. In the case of the deep-rooted species, tall fescue, soil mineral N fluxes to the roots were very close to N uptake values, consistent with its nitrogen nutrition index being lower than one. In the case of the shallow-rooted species Italian ryegrass, there was a large excess in terms of N supply, which was also consistent with its non-limiting nitrogen nutrition index. In both species, and even when nitrogen demands for growth were fully satisfied, the nitrogen nutrition index was closely and linearly related to the soil mineral N flux to roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Akmal M, Janssens MJJ (2004) Productivity and light use efficiency of perennial ryegrass with contrasting water and nitrogen supplies. Field Crops Res 88:143–155

    Article  Google Scholar 

  • Amato M, Pardo A (1994) Root length and biomass losses during sample preparation with different screen mesh sizes. Plant Soil 161:299–303

    Article  Google Scholar 

  • Barber SA, Peterson JB (1995) Soil nutrient bioavailability: a mechanistic approach. John Wiley, New York 414 p

    Google Scholar 

  • Bélanger G, Walsh JR, Richards JE, Milburn PH, Ziadi N (2001) Critical nitrogen curve and nitrogen nutrition index for potato in Eastern Canada. Am J Potato Res 78:355–364

    Article  Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Physiological responses to moderate water stress. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Springer, Berlin, pp 263–324

    Google Scholar 

  • Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, Nicoullaud B, Gate P, Devienne-Barret F, Antonioletti R, Durr C, Richard G, Beaudoin N, Recous S, Tayot X, Plenet D, Cellier P, Machet JM, Meynard JM, Delécolle R (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18:311–346

    Article  Google Scholar 

  • Brisson N, Launay M, Mary B, Beaudoin N (2009) Conceptual basis, formalisations and parameterization of the STICS crop model. Quae, Versailles

    Google Scholar 

  • Burns IG (1992) Influence of plant nutrient concentration on growth rate: use of a nutrient interruption technique to determine critical concentrations of N, P and K in young plants. Plant Soil 142:221–233

    Article  CAS  Google Scholar 

  • Campbell GS (1974) A simple method for determining unsaturated hydraulic conductivity from moisture retention data. Soil Sci 117:311–314

    Article  Google Scholar 

  • Colnenne C, Meynard JM, Reau R, Justes E, Merrien A (1998) Determination of a critical nitrogen dilution curve for winter oilseed rape. Ann Bot 81:311–317

    Article  CAS  Google Scholar 

  • D’Aoust MJ, Tayler RS (1968) The interaction between nitrogen and water in the growth of grass swards. J Agric Sci Camb 70:11–17

    Article  Google Scholar 

  • Devienne-Baret F, Justes E, Machet JM, Mary B (2000) Integrated control of nitrate uptake by crop growth rate and soil nitrate availability under field conditions. Ann Bot 86:995–1005

    Article  Google Scholar 

  • Ducloux J, Chesseron C (1989) Les terres rouges à châtaigners dans l’Ouest de la France. Annales de la Societé des Sciences Naturelles Charentes Maritimes 7:853–868

    Google Scholar 

  • Durand JL, Ghesquière M (2002) Root biomass changes in tall fescue and Italian ryegrass swards under two irrigation regimes. In: Durand JL, Emile JC, Huyghe C, Lemaire G (eds) Multi-function grasslands: quality forages, animal products and landscapes. Grassland Science in Europe, La Rochelle, pp 292–293

    Google Scholar 

  • Durand JL, Gastal F, Etchebest S, Bonnet AC, Ghesquière M (1997) Interspecific variability of plant water status and leaf morphogenesis in temperate forage grasses under summer water deficit. Eur J Agron 7:99–107

    Article  Google Scholar 

  • Duru M (2004) Simplified nitrogen assessment of orchard grass swards. Agronomy Journal 96:1598–1605

    Article  Google Scholar 

  • Farruggia A, Gastal F, Scholefield D (2004) Assessment of the nitrogen status of grassland. Grass Forage Sci 59:113–120

    Article  CAS  Google Scholar 

  • Gabrielle B, Denoroy P, Gosse G, Justes E, Andersen MN (1998) Development and evaluation of a CERES-type model for winter oilseed rape. Field Crops Res 57:95–111

    Article  Google Scholar 

  • Gardner WR (1960) Relation of root distribution to water uptake and availability. Agron J 56:41–45

    Google Scholar 

  • Garwood EA, Williams TE (1967) Growth, water use and nutrient uptake from the subsoil by grass swards. J Agric Sci Camb 69:125–130

    Article  CAS  Google Scholar 

  • Gonzalez-Dugo V, Durand JL, Gastal F, Picon-Cochard C (2005) Short-term response of the nitrogen nutrition status of tall fescue and Italian ryegrass swards under water deficit. Aust J Agric Res 56:1269–1276

    Article  CAS  Google Scholar 

  • Greenwood DJ, Neeteson JJ, Draycott A (1986) Quantitative relationships for the dependence of growth rates of arable crops on their nitrogen content, dry weight and aerial environment. Plant Soil 91:281–301

    Article  Google Scholar 

  • Gregory P (2006) Roots, rhizosphere and soil: the root to a better understanding of soil science? Eur J Soil Sci 57:2–12

    Article  Google Scholar 

  • Hermann A, Taube F (2004) The range of the critical nitrogen dilution curve for maize (Zea mays L.) can be extended until silage maturity. Agron J 96:1131–1138

    Article  Google Scholar 

  • Hoffland E, Bloemhof HS, Leffelaar PA, Findenegg GR, Nelemans JA (1990) Simulation of nutrient uptake by a growing root system considering increasing root density and inter-root competition. Plant Soil 124:149–155

    Article  CAS  Google Scholar 

  • Hubert F (2009) Modélisation des diffractogrammes de minéraux argileux dans deux sols de climat tempéré. Implications minéralogique et pédologique. Thèse de doctorat l’Université de Poitiers. 223 p

  • Lemaire G, Denoix A (1987) Croissance estivale en matière sèche de peuplements de fétuque élevée (Festuca arundinacea Schreb.) et de dactyle (Dactylis glomerata L.) dans l’Ouest de la France. II. Interaction entre les niveaux d’alimentation hydrique et de nutrition azotée. Agronomie 7:381–389

    Article  Google Scholar 

  • Lemaire G, Gastal F (2009) Quantifying crop response to nitrogen deficiency and avenues to improve nitrogen use efficiency. In: Sadras V, Calderini D (eds) Crop physiology. Applications for genetic improvement and agronomy. Academic, London, pp 171–211

    Google Scholar 

  • Lemaire G, Salette J (1984) Relation entre dynamique de croissance et dynamique de prélèvement d’azote par un peuplement de graminées fourragères. 1—Etude de l’effet du milieu. Agronomie 4:423–430

    Article  Google Scholar 

  • Lemaire G, Recous S, Mary B (2004) Managing residues and nitrogen in intensive cropping systems. New understanding for efficient recovery by crops. In: Proceedings of the 4th international crop science congress, Brisbane (Australia)

  • Maertens C, Blanchet R, Puech J (1974) Influence des différents régimes hydriques sur l’absorption de l’eau et des éléments minéraux par les cultures. Ann Agron 25:575–586

    Google Scholar 

  • Nielsen DC, Halvorson AD (1991) Nitrogen fertility influence on water stress and yield of winter wheat. Agron J 83:1065–1070

    Article  Google Scholar 

  • Onillon B, Durand JL, Gastal F, Tournebize R (1995) Drought effects on growth and carbon partitioning in a tall fescue sward grown at different rates of nitrogen fertilization. Eur J Agron 4:91–99

    Google Scholar 

  • Peri PL, Lasagno RG (2009) Biomass, carbon and nutrient storage for dominant grasses of cold temperate steppe grasslands in southern Patagonia, Argentina. J Arid Environ (in press, on line version available)

  • Pierret A, Moran CJ, Doussan C (2005) Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots. New Phytol 166:967–980

    Article  PubMed  Google Scholar 

  • Raynaud X, Leadley PW (2004) Soil characteristics play a key role in modelling nutrient competition in plant communities. Ecology 85:2200–2214

    Article  Google Scholar 

  • Ritchie JT (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8:1204–1213

    Article  Google Scholar 

  • Rodriguez D, Robson AJ, Belford R (2009) Dynamic and functional monitoring technologies for application in crop management. In: Sadras V, Calderini D (eds) Crop physiology. Applications for genetic improvement and agronomy. Academic, London, pp 489–510

    Google Scholar 

  • Sadras VO (2005) A quantitative top–down view of interactions between stresses: theory and analysis of nitrogen–water co-limitation in Mediterranean agro-ecosystems. Aust J Agric Res 56:1151–1157

    Article  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  CAS  PubMed  Google Scholar 

  • Sharp RE, Davies WJ (1985) Root growth and water uptake by maize plants in drying soil. J Exp Bot 36:1441–1456

    Article  Google Scholar 

  • Smika DE, Haas HJ, Power JF (1965) Effects of moisture and nitrogen fertiliser on growth and water use by native grass. Agron J 57:483–486

    Article  Google Scholar 

  • Van Dobben WH (1962) Influence of temperature and light conditions on dry-matter distribution, development rate and yield in arable crops. Neth J Agric Sci 10:377–389

    Google Scholar 

  • WRB IWG (2006) World reference base for soil resources. Rome, 145 p

  • Ziadi N, Brassard M, Bélanger G, Cambouris AN, Tremblay N, Nolin MC, Claessens A, Parent L-E (2008) Critical nitrogen curve and nitrogen nutrition index for corn in eastern canada. Agron J 100:271–276

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dra Victoria Gonzalez-Dugo was the beneficiary of a PhD grant funded by INRA and the Poitou–Charentes region. This research was also supported by the CNRS ‘Ecosphère Continentale’ programme, N#03CV114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Durand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durand, JL., Gonzalez-Dugo, V. & Gastal, F. How much do water deficits alter the nitrogen nutrition status of forage crops?. Nutr Cycl Agroecosyst 88, 231–243 (2010). https://doi.org/10.1007/s10705-009-9330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-009-9330-3

Keywords

Navigation