Skip to main content
Log in

Three-dimensional mixed mode I+II+III singular stress field at the front of a \({\varvec{(}}\mathbf{111 }{\varvec{)}[}\bar{\mathbf{1 }}\bar{\mathbf{1 }}\mathbf 2 {\varvec{]}\times [}\mathbf 1 \bar{\mathbf{1 }}\mathbf 0 {\varvec{]}}\) crack weakening a diamond cubic mono-crystalline plate with crack turning and step/ridge formation

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A heretofore-unavailable mixed Frobenius type series, in terms of affine-transformed x-y coordinate variables of the Eshelby–Stroh type, is introduced to develop a new eigenfunction expansion technique. This is used, in conjunction with separation of the z-variable, to derive three-dimensional mixed-mode I+II+III asymptotic displacement and stress fields in the vicinity of the front of a semi-infinite through-thickness \((111)[\bar{{1}}\bar{{1}}2]\times [1\bar{{1}}0]\) crack weakening an infinite diamond cubic mono-crystalline plate. Crack-face boundary conditions and those that are prescribed on the top and bottom (free, fixed or lubricated) surfaces of the diamond cubic mono-crystalline plate are exactly satisfied. Explicit expressions for the mixed mode I+II+III singular stresses in the vicinity of the front of the through-thickness crack, are presented. Most important mixed modes I+II+III response is elicited even though the far-field loading is only mode I or II or III or any combination thereof. Finally, atomistic modeling of cracks requires consideration of both the long range elastic interactions and the short range physico-chemical reactions, such as bond breaking. The Griffith-Irwin approach does not take the latter into account, and nano-structural details such as bond orientation must be accounted for. A new mixed-mode I+II+III crack deflection criterion elucidates the formation of steps and/or triangular ridges on the crack path. The planes of a multiply deflected crack are normal to the directions of broken bonds. Additionally, the mixed-mode (I+II+III) crack deflection and ridge formation are found to be strongly correlated with the elastic stiffness constants, \({c}^{\prime }_{14}\) and \({c}^{\prime }_{56}\), of the diamond cubic single crystal concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berkeley EECS (2012) Semiconductor fundamentals. http://www-inst.eecs.berkeley.edu/~ee130/sp07/lectures/lecture1.ppt

  • Bernstein N, Hess DW (2003) Lattice trapping barriers to brittle fracture. Phys Rev Lett 91:025501(1–4)

    Article  Google Scholar 

  • Brede M, Haasen P (1988) The brittle-to-ductile transition in doped silicon as a model substance. Acta Metall 36:2003–2018

    Article  Google Scholar 

  • Buehler MJ, Tang H, van Duin ACT, Goddard WA III (2007) Threshold crack speed controls dynamical fracture of silicon single crystals. Phys Rev Lett 99:165502(1–4)

    Article  Google Scholar 

  • Carslaw HS (1930) Introduction to the theory of Fourier series and integrals, 3rd edn. Dover, New York

    Google Scholar 

  • Chaudhuri RA. (2014) Comparison of stress singularities of kinked carbon and glass fibers weakening compressed unidirectional composites: a 3D trimaterial junction stress singularity analysis. Philos Mag. doi:10.1080/14786435.2013.840749

  • Chaudhuri RA, Xie M, Garala HJ (1996) Stress singularity due to kink band weakening a unidirectional composite under compression. J Compos Mater 30:672–691

    Article  Google Scholar 

  • Chaudhuri RA, Xie M (1998) Free-edge stress singularity in a bimaterial laminate. Compos Struct 40:129–136

    Article  Google Scholar 

  • Chaudhuri RA, Xie M (2000a) A tale of two saints: St. Venant and “St. Nick”—does St. Venant’s principle apply to bimaterial straight edge and wedge singularity problems? Compos Sci Tech 60:2503–2515

    Google Scholar 

  • Chaudhuri RA, Xie M (2000b) A novel eigenfunction expansion solution for three-dimensional crack problems. Compos Sci Tech 60:2565–2580

    Article  Google Scholar 

  • Chaudhuri RA (2003a) Three-dimensional asymptotic stress field in the vicinity of the line of intersection of an inclusion and plate surface. Int J Fract 117:207–233

    Article  Google Scholar 

  • Chaudhuri RA (2003b) Eigenfunction expansion solutions for three-dimensional rigid planar inclusion problem. Int J Fract 121:95–110

    Article  Google Scholar 

  • Chaudhuri RA (2003c) Three-dimensional asymptotic stress field in the vicinity of the line of intersection of a circular cylindrical through/part-through open/rigidly plugged hole and a plate. Int J Fract 122:65–88

    Article  Google Scholar 

  • Chaudhuri RA (2003d) Three-dimensional asymptotic stress field in the vicinity of the circumference of a penny shaped discontinuity. Int J Solids Struct 40:3787–3805

    Article  Google Scholar 

  • Chaudhuri RA (2004a) An eigenfunction expansion solution for three-dimensional stress field in the vicinity of the circumferential line of intersection of a bimaterial interface and a hole. Int J Fract 129:361–384

    Article  Google Scholar 

  • Chaudhuri RA (2004b) Three-dimensional asymptotic stress field in the vicinity of the circumferential tip of a fiber-matrix interfacial debond. Int J Eng Sci 42:1707–1727

    Article  Google Scholar 

  • Chaudhuri RA (2006a) Three-dimensional asymptotic stress field in the vicinity of the circumference of a bimaterial penny shaped interface discontinuity. Int J Fract 141:207–221

    Article  Google Scholar 

  • Chaudhuri RA (2006b) Three-dimensional singular stress field near a partially debonded cylindrical rigid fiber. Compos Struct 72:141–150

    Article  Google Scholar 

  • Chaudhuri SN, Chaudhuri RA, Benner RE, Penugonda M (2006) Raman spectroscopy for characterization of interfacial debonds between carbon fibers and polymer matrices. Compos Struct 76:375–387

    Article  Google Scholar 

  • Chaudhuri RA, Chiu SHJ (2007) Three-dimensional asymptotic stress field at the front of an unsymmetric bimaterial wedge associated with matrix cracking or fiber break. Compos Struct 78:254–263

    Article  Google Scholar 

  • Chaudhuri RA, Chiu SHJ (2009) Three-dimensional asymptotic stress field in the vicinity of an adhesively bonded scarf joint interface. Compos Struct 89:475–483

    Article  Google Scholar 

  • Chaudhuri RA (2010a) Three-dimensional singular stress field at the front of a crack and lattice crack deviation in a cubic single crystal plate. Philos Mag 90:2049–2113

    Article  Google Scholar 

  • Chaudhuri RA (2010b) On three-dimensional singular stress field at the front of a crack/anticrack in an orthotropic/orthorhombic plate subjected to far-field antiplane shear loading. Compos Struct 92:1977–1984 (see also Erratum, Composite Structures (2011) 93, 1058)

    Article  Google Scholar 

  • Chaudhuri RA (2011) Three-dimensional singular stress field at the front of a crack weakening a unidirectional fiber reinforced composite plate. Compos Struct 93:513–527

    Article  Google Scholar 

  • Chaudhuri RA (2012a) Three-dimensional singular stress/residual stress fields at crack/anticrack fronts in monoclinic plates under antiplane shear loading. Eng Fract Mech 87:16–35

    Article  Google Scholar 

  • Chaudhuri RA (2012b) On three-dimensional singular stress field at the front of a planar rigid inclusion (anticrack) in an orthorhombic monocrystalline plate. Int J Fract 174:103–126

    Article  Google Scholar 

  • Chaudhuri RA, Chiu SHJ (2012) Three-dimensional singular stress field near the interfacial bond line of a tapered jointed plate either free-standing (notch) or (fully/partially) attached to a super-rigid inclusion (antinotch). Eng Fract Mech 91:87–102

    Article  Google Scholar 

  • Chaudhuri RA, Yoon J (2012) Three-dimensional asymptotic mode I/II stress fields at the front of interfacial crack/anticrack discontinuities in trimaterial bonded plates. Compos Struct 94:351–362

    Article  Google Scholar 

  • Chaudhuri RA (2013) Three-dimensional singular stress field near the junction corner front of an island/substrate system either free-standing or fully/partially bonded to a rigid block. Eng Fract Mech 107:80–97

    Article  Google Scholar 

  • Chemeurope (2012) http://www.chemeurope.com/en/encyclopedia/Diamond_cubic.html

  • Chiu JSH, Chaudhuri RA (2002) Three-dimensional asymptotic stress field at the front of an unsymmetric bimaterial pie-shaped wedge under antiplane shear loading. Compos Struct 58:129–137

    Article  Google Scholar 

  • Chiu SHJ, Chaudhuri RA (2011) A three-dimensional eigenfunction expansion approach for singular stress field near an adhesively bonded scarf joint interface in a rigidly-encased plate. Eng Fract Mech 78:2220–2234

    Article  Google Scholar 

  • Clarke DR (1992) Fracture of silicon and other semiconductors. Semicond Semimet 37:79–142

    Article  Google Scholar 

  • Cook RF (2006) Strength and sharp contact fracture of Si. J Mater Sci 41:841–872

    Article  Google Scholar 

  • Cotton FA, Wilkinson G (1980) Advanced inorganic chemistry, 4th edn. Wiley, New York

    Google Scholar 

  • Cramer T, Wanner A, Gumbsch P (1997) Crack velocities during dynamic fracture of glass and single crystalline silicon. Phys Stat Solidi A 164:R5–R6

    Article  Google Scholar 

  • Cramer T, Wanner A, Gumbsch P (2000) Energy dissipation and path instability in dynamic fracture of silicon single crystals. Phys Rev Lett 85:788–791

    Article  Google Scholar 

  • Ebrahimi F, Kalwani L (1999) Fracture anisotropy in silicon single crystals. Mater Sci Eng A 268:116–126

    Article  Google Scholar 

  • Eshelby JD, Read WT, Shockley W (1953) Anisotropic elasticity with application to dislocation theory. Acta Metall 1:251– 259

    Article  Google Scholar 

  • Folias ES (1989) On interlaminar stresses of a composite plate around the neighborhood of a hole. Int J Solids Struct 25:1193–1200

    Article  Google Scholar 

  • George A, Michot G (1993) Dislocation loops at crack tips: nucleation and growth—an experimental study in silicon. Mater Sci Eng A 164:118–134

    Article  Google Scholar 

  • Harrison WA (1980) Electronic structure and properties of solids. W. H. Freeman & Co, San Francisco

    Google Scholar 

  • Hauch JA, Holland D, Marder M, Swinny H (1999) Dynamic fracture in single crystal silicon. Phys Rev Lett 82:3823–3826

    Article  Google Scholar 

  • Hesketh PJ, Ju C, Gowda S, Zanoria E, Danyluk S (1993) Surface free-energy model of silicon anisotropic etching. J Electrochem Soc 140:1080–1085

    Article  Google Scholar 

  • Hoshi T, Fujiwara T (2000) Theory of composite-band Wannier states and order-n electronic-structure calculations. J Phys Soc Jpn 69:3773–3776

    Article  Google Scholar 

  • Hoshi T, Takayama R, Iguchi Y, Fujiwara T (2006) Large-scale electronic-structure theory and nanoscale defects formed in cleavage process of silicon. Physica B 376–377:975–978

    Google Scholar 

  • Kermode JR, Albaret T, Sherman D, Bernstein N, Gumbsch P, Payne MC, Csányi G, De Vita A (2008) Low speed fracture instabilities in a brittle crystal. Nature 455:1224–1227

    Google Scholar 

  • Lawn B (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lin IH, Thomson R (1986) Cleavage, dislocation emission, and shielding for cracks under general loading. Acta Metall 34:187–206

    Article  Google Scholar 

  • Lin B, Mear ME, Ravi-Chandar K (2010) Criterion for initiation of cracks under mixed-mode I+III loading. Int J Fract 165:175–188

    Article  Google Scholar 

  • Michot G (1988) Fundamentals of silicon fracture. Cryst Prop Prep 17 & 18:55–98

    Google Scholar 

  • Nazarov SA (2005) Stress intensity factors and crack deviation conditions in a brittle anisotropic solid. J Appl Mech Tech Phys 36:386–394

    Article  Google Scholar 

  • Perez R, Gumbsch P (2000) Directional anisotropy in the cleavage fracture of silicon. Phys Rev Lett 84:5347–5350

    Google Scholar 

  • Samuels J, Roberts SG (1989) The brittle-ductile transition in silicon. I. Experiments. Proc R Soc Lond A 421:1–23

    Article  Google Scholar 

  • Sherman D, Markovitz M, Barkai O (2008) Dynamic instabilities in \(\{1 1 1\}\) silicon. J Mech Phys Solids 56:376–387

    Article  Google Scholar 

  • Sih GC, Paris PC, Irwin GR (1965) On cracks in rectilinearly anisotropic solids. Int J Fract Mech 1:189–203

    Google Scholar 

  • Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook. MIT Press, Cambridge

  • Sneddon I (1965) A note on the problem of the penny-shaped crack. Math Proc Camb Philos Soc 61:609–611

    Google Scholar 

  • St. John C (1975) The brittle-to-ductile transition in pre-cleaved silicon single crystals. Philos Mag 32:1193–1212

    Google Scholar 

  • Stenger F, Chaudhuri R, Chiu J (2000) Sinc solution of boundary integral form for two-dimensional bi-material elasticity problems. Compos Sci Tech 60:2197–2211

    Google Scholar 

  • Stroh AN (1958) Dislocations and cracks in anisotropic elasticity. Philos Mag 7:625–646

    Article  Google Scholar 

  • Wilcox CH (1979) Uniqueness theorems for displacement fields with locally finite energy in linear elastostatics. J Elast 9:221–243

    Google Scholar 

  • Willis JR (1972) The penny shaped crack on an interface. Q J Mech Appl Math 25:367–385

    Article  Google Scholar 

  • Xie M, Chaudhuri RA (1998) Three-dimensional stress singularity at a bimaterial interface crack front. Compos Struct 40:137–147

    Article  Google Scholar 

  • Xie M, Chaudhuri RA (2001) Three-dimensional asymptotic stress field at the front of a bimaterial wedge of symmetric geometry under antiplane shear loading. Compos Struct 54:509–514

    Article  Google Scholar 

  • Yoon J, Chaudhuri RA (2011) Three-dimensional asymptotic antiplane shear stress fields at the front of interfacial crack/anticrack type discontinuities in trimaterial bonded plates. Compos Struct 93:1505–1515

    Article  Google Scholar 

  • Yoon J, Chaudhuri RA (2012) Three-dimensional asymptotic stress fields at the front of a trimaterial junction. Compos Struct 94:337–350

    Article  Google Scholar 

  • Yoon J, Chaudhuri RA (2013) Three-dimensional singular antiplane shear stress fields at the fronts of interfacial crack/anticrack/contact type discontinuities in tricrystal anisotropic plates. Eng Fract Mech 102:15–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reaz A. Chaudhuri.

Appendices

Appendix A: Transformed elastic stiffness constants of a diamond cubic mono-crystalline plate

The non-vanishing elastic stiffness constants, \({c}^{\prime }_{ij}\), with respect to the rotated coordinate system, \(\hbox {x }[1\bar{{1}}0]\), \(\hbox {y }[111]\), \(\hbox {z }[\bar{{1}}\bar{{1}}2]\) and referred to in Eq. (1) can be expressed in terms of their counterparts, , determined with respect to the edges, [100], [010], [001], of a diamond cubic crystal as follows:

$$\begin{aligned} \begin{aligned}&{c}^{\prime }_{11} ={c}^{\prime }_{33} =\frac{1}{2}\left( {c_{11} +c_{12} } \right) +c_{66} , \\&{c}^{\prime }_{22} =\frac{1}{3}\left( {c_{11} +2c_{12} +4c_{66} } \right) ,\\&{c}^{\prime }_{44} ={c}^{\prime }_{66} =\frac{1}{3}\left( {c_{11} -c_{12} +c_{66} } \right) , \\&{c}^{\prime }_{55} =\frac{1}{6}\left( {c_{11} -c_{12} +4c_{66} } \right) , \\&{c}^{\prime }_{12} ={c}^{\prime }_{23} =\frac{1}{3}\left( {c_{11} +2c_{12} -2c_{66} } \right) , \\&{c}^{\prime }_{13} =\frac{1}{6}\left( {c_{11} +5c_{12} -2c_{66} } \right) ,\\&{c}^{\prime }_{14} =-\frac{1}{3\sqrt{2}}\left( {c_{11} -c_{12} -2c_{66} } \right) , \\&{c}^{\prime }_{34} =-{c}^{\prime }_{56} =\frac{1}{3\sqrt{2}}\left( {c_{11} -c_{12} -2c_{66} } \right) . \end{aligned} \end{aligned}$$
(78)

Appendix B: Details of the derivation of the solution for a \((111)[\bar{{1}}\bar{{1}}2]\times [1\bar{{1}}0]\) through-crack under mixed mode I+II+III loading

Some of the details of the mathematical derivation of the solution, involving complex roots, for a diamond cubic crystal plate, weakened by \((111)[\bar{{1}}\bar{{1}}2]\times [1\bar{{1}}0]\) through-crack and subjected to mode I/II loading (Sect. 3), are presented here. The components of displacement that satisfy the equilibrium equations (1) can be expressed in the following form:

$$\begin{aligned}&u(x,y,z) = ( \overline{{\overline{{D}}}}_1 i\sin ( {kz} )+ \overline{{\overline{{D}}}}_2 \cos ( {kz} ) ) ( {ik} )^{s}\nonumber \\&\quad \times \, [ \overline{{A}}_1( {x+(\xi +i\eta )y} )^{s} + \overline{{A}}_2 ( {x+(\xi -i\eta )y} )^{s}\nonumber \\&\quad +\,\overline{{A}}_3 ( {x+(-\xi +i\eta )y} )^{s}+ \overline{{A}}_4 ( {x+(-\xi -i\eta )y} )^{s}\nonumber \\&\quad +\,\overline{{A}}_5 (x+i\zeta y)^{s} + \overline{{A}}_6 (x-i\zeta y)^{s} ],\end{aligned}$$
(79a)
$$\begin{aligned}&v(x,y,z) = ( \overline{{\overline{{D}}}}_1 i\sin ( {kz} )+ \overline{{\overline{{D}}}}_2 \cos ( {kz} ) ) ( {ik} )^{s}\nonumber \\&\quad \times \, [ \overline{{B}}_1 ( {x+(\xi +i\eta )y} )^{s} + \overline{{B}}_2 ( {x+(\xi -i\eta )y} )^{s}\nonumber \\&\quad +\, \overline{{B}}_3 ( {x+(-\xi +i\eta )y} )^{s} +\overline{{B}}_4 ( {x+(-\xi -i\eta )y} )^{s}\nonumber \\&\quad +\,\overline{{B}}_5 (x+i\zeta y)^{s} + \overline{{B}}_6 (x-i\zeta y)^{s} ],\end{aligned}$$
(79b)
$$\begin{aligned}&w(x,y,z) = ( \overline{{\overline{{D}}}}_1 i\sin ( {kz} )+ \overline{{\overline{{D}}}}_2 \cos ( {kz} ) )( {ik} )^{s}\nonumber \\&\quad \times \, [ \overline{{C}}_1 ( {x+(\xi +i\eta )y})^{s}+\overline{{C}}_2 ( {x+(\xi -i\eta )y} )^{s}\nonumber \\&\quad \, + \overline{{C}}_3 ( {x+(-\xi +i\eta )y} )^{s} +\overline{{C}}_4 ( {x+(-\xi -i\eta )y} )^{s}\nonumber \\&\quad \,+ \overline{{C}}_5 (x+i\zeta y)^{s} + \overline{{C}}_6 (x-i\zeta y)^{s} ], \end{aligned}$$
(79c)

where \(\overline{{A}}_k , \overline{{B}}_k , \overline{{C}}_k , \hbox {k} = 1,\ldots ,6\), are undetermined coefficients. It may be noted that \(\overline{{B}}_k\) and \(\overline{{C}}_k\) can be expressed in terms of the corresponding \(\overline{{A}}_k , \hbox {k} = 1,\ldots ,6\), by using Eq. (9), as given below:

$$\begin{aligned} \overline{{B}}_1&= \left( {H_1 + iH_2 } \right) \overline{{A}}_1 ,\end{aligned}$$
(80a)
$$\begin{aligned} \overline{{B}}_2&= \left( {H_1 - iH_2 } \right) \overline{{A}}_2 ,\end{aligned}$$
(80b)
$$\begin{aligned} \overline{{B}}_3&= \left( {H_3 + iH_4 } \right) \overline{{A}}_3,\end{aligned}$$
(80c)
$$\begin{aligned} \overline{{B}}_4&= \left( {H_3 - iH_4 } \right) \overline{{A}}_4,\end{aligned}$$
(80d)
$$\begin{aligned} \overline{{B}}_5&= \left( {H_5 + iH_6 } \right) \overline{{A}}_5 ,\end{aligned}$$
(80e)
$$\begin{aligned} \overline{{B}}_6&= \left( {H_5 - iH_6 } \right) \overline{{A}}_6 , \end{aligned}$$
(80f)
$$\begin{aligned} \overline{{C}}_1&= \left( {{H}^{\prime }_1 + i{H}^{\prime }_2 } \right) \overline{{A}}_1,\end{aligned}$$
(81a)
$$\begin{aligned} \overline{{C}}_2&= \left( {{H}^{\prime }_1 - i{H}^{\prime }_2 } \right) \overline{{A}}_2 ,\end{aligned}$$
(81b)
$$\begin{aligned} \overline{{C}}_3&= \left( {{H}^{\prime }_3 + i{H}^{\prime }_4} \right) \overline{{A}}_3 ,\end{aligned}$$
(81c)
$$\begin{aligned} \overline{{C}}_4&= \left( {{H}^{\prime }_3 - i{H}^{\prime }_4 } \right) \overline{{A}}_4,\end{aligned}$$
(81d)
$$\begin{aligned} \overline{{C}}_5&= \left( {{H}^{\prime }_5 + i{H}^{\prime }_6 } \right) \overline{{A}}_5 ,\end{aligned}$$
(81e)
$$\begin{aligned} \overline{{C}}_6&= \left( {{H}^{\prime }_5 - i{H}^{\prime }_6 } \right) \overline{{A}}_6, \end{aligned}$$
(81f)

in which

$$\begin{aligned} H_1&= -\frac{\left\{ {\left( {a_1 \!+\!{a}^{\prime }_1 } \right) \left( {c_1 \!+\!{c}^{\prime }_1 } \right) +\left( {b_1 \!+\!{b}^{\prime }_1 } \right) \left( {d_1 \!+\!{d}^{\prime }_1 } \right) } \right\} }{\left\{ {\left( {c_1 \!+\!{c}^{\prime }_1 } \right) ^{2}\!+\!\left( {d_1 \!+\!{d}^{\prime }_1 } \right) ^{2}} \right\} },\end{aligned}$$
(82a)
$$\begin{aligned} H_2&= -\frac{\left\{ {\left( {b_1 \!+\!{b}^{\prime }_1 } \right) \left( {c_1 \!+\!{c}^{\prime }_1 } \right) \!-\!\left( {a_1 \!+\!{a}^{\prime }_1 } \right) \left( {d_1 \!+\!{d}^{\prime }_1 } \right) } \right\} }{\left\{ {\left( {c_1 \!+\!{c}^{\prime }_1 } \right) ^{2} \!+\!\left( {d_1 \!+\!{d}^{\prime }_1 } \right) ^{2}} \right\} },\end{aligned}$$
(82b)
$$\begin{aligned} H_3&= -\frac{\left\{ {\left( {a_1 \!-\!{a}^{\prime }_1 } \right) \left( {c_1 \!-\!{c}^{\prime }_1 } \right) \!+\!\left( {b_1 \!-\!{b}^{\prime }_1 } \right) \left( {d_1 \!-\!{d}^{\prime }_1 } \right) } \right\} }{\left\{ {\left( {c_1 \!-\!{c}^{\prime }_1 } \right) ^{2} \!+\!\left( {d_1 \!-\!{d}^{\prime }_1 } \right) ^{2}} \right\} },\end{aligned}$$
(82c)
$$\begin{aligned} H_4&= \frac{\left\{ {\left( {b_1 \!-\!{b}^{\prime }_1 } \right) \left( {c_1 \!-\!{c}^{\prime }_1 } \right) \!-\!\left( {a_1 -{a}^{\prime }_1 } \right) \left( {d_1 \!-\!{d}^{\prime }_1 } \right) } \right\} }{\left\{ {\left( {c_1 \!-\!{c}^{\prime }_1 } \right) ^{2} \!+\!\left( {d_1 \!-\!{d}^{\prime }_1 } \right) ^{2}} \right\} },\end{aligned}$$
(82d)
$$\begin{aligned} H_5&= \frac{\left\{ {e_1 g_1 +f_1 h_1 } \right\} }{\left( {g_1 ^{2}+h_1 ^{2}} \right) },\end{aligned}$$
(82e)
$$\begin{aligned} H_6&= \frac{\left\{ {f_1 g_1 -e_1 h_1 } \right\} }{\left( {g_1 ^{2}+h_1 ^{2}} \right) }, \end{aligned}$$
(82f)
$$\begin{aligned} {H}^{\prime }_1&= -\frac{\left\{ {a_2 c_2 +b_2 d_2 } \right\} }{\left\{ {c_2 ^{2}+d_2 ^{2}} \right\} },\end{aligned}$$
(83a)
$$\begin{aligned} {H}^{\prime }_2&= \frac{\left\{ {a_2 d_2 -b_2 c_2 } \right\} }{\left\{ {c_2 ^{2}+d_2 ^{2}} \right\} },\end{aligned}$$
(83b)
$$\begin{aligned} {H}^{\prime }_3&= -\frac{\left\{ {e_2 g_2 +f_2 h_2 } \right\} }{\left\{ {g_2 ^{2}+h_2 ^{2}} \right\} },\end{aligned}$$
(83c)
$$\begin{aligned} {H}^{\prime }_4&= \frac{\left\{ {e_2 h_2 -f_2 g_2 } \right\} }{\left\{ {g_2 ^{2}+h_2 ^{2}} \right\} },\end{aligned}$$
(83d)
$$\begin{aligned} {H}^{\prime }_5&= -\frac{\left\{ {{c}^{\prime }_{14} +{c}^{\prime }_{56} H_5 } \right\} }{\left\{ {{c}^{\prime }_{55} -{c}^{\prime }_{44} \zeta ^{2}} \right\} },\end{aligned}$$
(83e)
$$\begin{aligned} {H}^{\prime }_6&= -\frac{{c}^{\prime }_{56} \left\{ {\zeta +H_6 } \right\} }{\left\{ {{c}^{\prime }_{55} -{c}^{\prime }_{44} \zeta ^{2}} \right\} }, \end{aligned}$$
(83f)

where

$$\begin{aligned} a_1&= {c}^{\prime }_{11} {c}^{\prime }_{44} +{c}^{\prime }_{55} {c}^{\prime }_{66} +{c}^{\prime }_{44} {c}^{\prime }_{66} \left( {\xi ^{2}-\eta ^{2}} \right) \nonumber \\&\quad +{c}^{\prime }_{11} {c}^{\prime }_{55} \frac{\left( {\xi ^{2}-\eta ^{2}} \right) }{\left( {\xi ^{2}+\eta ^{2}} \right) ^{2}}, \end{aligned}$$
(84a)
$$\begin{aligned} {a}^{\prime }_1 =-\left( {{c}^{\prime }_{14} +{c}^{\prime }_{56} } \right) ^{2}\xi , \end{aligned}$$
(84a')
$$\begin{aligned} b_1 =-\frac{2{c}^{\prime }_{11} {c}^{\prime }_{55} \xi \eta }{\left( {\xi ^{2}+\eta ^{2}} \right) ^{2}}+2{c}^{\prime }_{44} {c}^{\prime }_{66} \xi \eta , \end{aligned}$$
(84b)
$$\begin{aligned} {b}^{\prime }_1 =-\left( {{c}^{\prime }_{14} +{c}^{\prime }_{56} } \right) ^{2}\eta , \end{aligned}$$
(84b')
$$\begin{aligned} c_1 =\left( {{c}^{\prime }_{12} +{c}^{\prime }_{66} } \right) \left\{ {{c}^{\prime }_{55} +{c}^{\prime }_{44} \left( {\xi ^{2}-\eta ^{2}} \right) } \right\} -{c}^{\prime }_{14} {c}^{\prime }_{56},\nonumber \\ \end{aligned}$$
(84c)
$$\begin{aligned} {c}^{\prime }_1 =-{{{c}^{\prime }_{56}}^{2}}\xi , \end{aligned}$$
(84c')
$$\begin{aligned} d_1 =2{c}^{\prime }_{44} \left( {{c}^{\prime }_{12} +{c}^{\prime }_{66} } \right) \xi \eta , \end{aligned}$$
(84d)
$$\begin{aligned} {d}^{\prime }_1 =-{{{c}^{\prime }_{56}}^{2}}\eta , \end{aligned}$$
(84d')
$$\begin{aligned} e_1&= \left( {{c}^{\prime }_{11} -{c}^{\prime }_{66} \zeta ^{2}} \right) \left( {{c}^{\prime }_{55} -{c}^{\prime }_{44} \zeta ^{2}} \right) /\zeta ^{2},\end{aligned}$$
(84e)
$$\begin{aligned} f_1&= \left( {{c}^{\prime }_{14} +{c}^{\prime }_{56} } \right) ^{2}\zeta ,\end{aligned}$$
(84f)
$$\begin{aligned} g_1&= \left( {{c}^{\prime }_{12} +{c}^{\prime }_{66} } \right) \left( {{c}^{\prime }_{55} -{c}^{\prime }_{44} \zeta ^{2}} \right) -{c}^{\prime }_{14} {c}^{\prime }_{56} ,\end{aligned}$$
(84g)
$$\begin{aligned} h_1&= -{{{c}^{\prime }_{56}}^{2}}\zeta , \end{aligned}$$
(84h)
$$\begin{aligned} a_2&= {c}^{\prime }_{14} +{c}^{\prime }_{56} \left( {\xi +H_1 } \right) ,\end{aligned}$$
(85a)
$$\begin{aligned} b_2&= {c}^{\prime }_{56} \left( {H_2 +\eta } \right) ,\end{aligned}$$
(85b)
$$\begin{aligned} c_2&= {c}^{\prime }_{55} +{c}^{\prime }_{44} \left( {\xi ^{2}-\eta ^{2}} \right) ,\end{aligned}$$
(85c)
$$\begin{aligned} d_2&= 2{c}^{\prime }_{44} \xi \eta ,\end{aligned}$$
(85d)
$$\begin{aligned} e_2&= {c}^{\prime }_{14} -{c}^{\prime }_{56} \left( {\xi -H_3 } \right) ,\end{aligned}$$
(85e)
$$\begin{aligned} f_2&= {c}^{\prime }_{56} \left( {H_4 +\eta } \right) ,\end{aligned}$$
(85f)
$$\begin{aligned} g_2&= c_2 ,\end{aligned}$$
(85g)
$$\begin{aligned} h_2&= -d_2. \end{aligned}$$
(85h)

The corresponding stress field can easily be obtained from Eq. (79). It is convenient to express the components of the displacement vector and stress tensor, in terms of the cylindrical polar coordinate system \((\hbox {r}, \uptheta , \hbox {z})\); see Fig. 2. Expressing

$$\begin{aligned}&\rho \cos (\psi ) = r \left( {\cos (\theta )+\xi \sin (\theta )} \right) , \nonumber \\&{\rho \sin (\psi ) = r \left( {\eta \sin (\theta )} \right) }, \end{aligned}$$
(86a)
$$\begin{aligned}&{\rho }^{\prime } \cos ({\psi }^{\prime }) = r \left( {\cos (\theta )-\xi \sin (\theta )} \right) ,\nonumber \\&{{\rho }^{\prime } \sin ({\psi }^{\prime }) = r \left( {\eta \sin (\theta )} \right) ,} \end{aligned}$$
(86b)
$$\begin{aligned}&{\rho }^{\prime \prime } \cos ({\psi }^{\prime \prime }) = r \cos (\theta ),\nonumber \\&{{\rho }^{\prime \prime } \sin ({\psi }^{\prime \prime }) = r \left( {\zeta \sin (\theta )} \right) }, \end{aligned}$$
(86c)

in which

$$\begin{aligned}&\rho = r\{ {( {\cos (\theta)+\xi \sin (\theta )} )^{2} + \eta ^{2}\sin ^{2}(\theta )} \}^{1/2},\end{aligned}$$
(87a)
$$\begin{aligned}&{\rho }^{\prime } =r\{ {( {\cos (\theta )-\xi \sin (\theta )} )^{2}+\eta ^{2}\sin ^{2}(\theta )} \}^{1/2},\end{aligned}$$
(87b)
$$\begin{aligned}&{\rho }^{\prime \prime } =r\{ {\cos ^{2}(\theta )+\zeta ^{2}\sin ^{2}(\theta )} \}^{1/2}, \end{aligned}$$
(87c)

and

$$\begin{aligned}&\cos ( {\psi (\theta )} )\!=\!\frac{\cos (\theta ) \!+\!\xi \sin (\theta )}{\{ {( {\cos (\theta )\!+\!\xi \sin (\theta )} )^{2}\!+\!\eta ^{2}\sin ^{2}(\theta )} \}^{1/2}},\end{aligned}$$
(88a)
$$\begin{aligned}&\sin ( {\psi (\theta )} )\!=\!\frac{\eta \sin (\theta )}{\{ {( {\cos (\theta )\!+\!\xi \sin (\theta )} )^{2}\!+\!\eta ^{2}\sin ^{2}(\theta )} \}^{1/2}},\end{aligned}$$
(88b)
$$\begin{aligned}&\cos ( {{\psi }^{\prime }(\theta )} ) \!=\!\frac{\cos (\theta )\!-\!\xi \sin (\theta )}{\{ {( {\cos (\theta )\!-\!\xi \sin (\theta )} )^{2}\!+\!\eta ^{2}\sin ^{2}(\theta )} \}^{1/2}},\end{aligned}$$
(88c)
$$\begin{aligned}&\sin ( {{\psi }^{\prime }(\theta )} ) \!=\!\frac{\eta \sin (\theta )}{\{ {( {\cos (\theta )\!-\!\xi \sin (\theta )} )^{2}\!+\!\eta ^{2}\sin ^{2}(\theta )} \}^{1/2}},\end{aligned}$$
(88d)
$$\begin{aligned}&\cos ( {{\psi }^{\prime \prime }(\theta )} )=\frac{\cos (\theta )}{\{ {\cos ^{2}(\theta )+\zeta ^{2}\sin ^{2}(\theta )} \}^{1/2}},\end{aligned}$$
(88e)
$$\begin{aligned}&\sin ( {{\psi }^{\prime \prime }(\theta )} )=\frac{\zeta \sin (\theta )}{\{ {\cos ^{2}(\theta )+\zeta ^{2}\sin ^{2}(\theta )} \}^{1/2}}, \end{aligned}$$
(88f)

the general asymptotic form for the displacement and stress fields can be written as follows:

$$\begin{aligned}&u(r,\theta ,z)=r^{s}D_b (z)(ik)^{s}[ \{ (\cos (\theta )+\xi \sin (\theta ))^{2}\nonumber \\&\quad +\eta ^{2}\sin ^{2}(\theta ) \}^{s/2}\{ A_1 \cos (s\psi )+A_2\sin (s\psi ) \}\nonumber \\&\quad + \{ ( {\cos (\theta )-\xi \sin (\theta )} )^{2}+ \eta ^{2}\sin ^{2}(\theta ) \}^{s/2}\nonumber \\&\quad \times \{ A_3 \cos ( {s{\psi }^{\prime }} ) + A_4 \sin ( {s{\psi }^{\prime }} ) \}\nonumber \\&\quad + \{ {\cos ^{2}(\theta ) + \zeta ^{2}\sin ^{2}(\theta )} \}^{s/2} \{ A_5 \cos ( {s{\psi }^{\prime \prime }} ) \nonumber \\&\quad + A_6 \sin ( {s{\psi }^{\prime \prime }} ) \} ] +O( {r^{s+2}}),\end{aligned}$$
(89a)
$$\begin{aligned}&v(r,\theta ,z)=r^{s}D_b ( z ) ( {ik} )^{s}[ \{ ( \cos (\theta )+\xi \sin (\theta ) )^{2}\nonumber \\&\quad +\eta ^{2}\sin ^{2}(\theta ) \}^{s/2}\{{( {H_1 A_1 } }+H_2 A_2 )\cos ( {s\psi } ) \nonumber \\&\quad +( {H_1 A_2 \!-\! H_2 A_1 } ) \sin ( {s\psi } ) \} \!+\! \{ {( {\cos (\theta )\!-\!\xi \sin (\theta )} )^{2}} \nonumber \\&\quad {+\eta ^{2}\sin ^{2}(\theta )} \} ^{s/2}\{ ( {H_3 A_3 + H_4 A_4 } ) \cos ( {s{\psi }^{\prime }} ) \nonumber \\&\quad +( {H_3 A_4 - H_4 A_3 } )\sin ( {s{\psi }^{\prime }} ) \}\nonumber \\&\quad +\{ \cos ^{2}(\theta ) {+\zeta ^{2}\sin ^{2}(\theta )} \} ^{s/2}\{ ( {H_5 A_5 + H_6 A_6 } ) \nonumber \\&\quad \times \cos ( {s{\psi }^{\prime \prime }} )+( {H_5 A_6 - H_6 A_5 } )\sin ( {s{\psi }^{\prime \prime }} )\} ]\nonumber \\&\quad +O( {r^{s+2}} ),\end{aligned}$$
(89b)
$$\begin{aligned}&w(r,\theta ,z)=r^{s}D_b ( z ) ( {ik} )^{s}[ \{ ( \cos (\theta )+\xi \sin (\theta ) )^{2}\nonumber \\&\quad +\eta ^{2}\sin ^{2}(\theta ) \}^{s/2}\{ {( {{H}^{\prime }_1 A_1 } } {+{H}^{\prime }_2 A_2 } )\cos ( {s\psi } )\nonumber \\&\quad + {( {{H}^{\prime }_1 A_2 \!-\! {H}^{\prime }_2 A_1 } ) \sin ( {s\psi } )} \} \!+\! \{ {( {\cos (\theta )\!-\!\xi \sin (\theta )} )^{2}} \nonumber \\&\quad {+\eta ^{2}\sin ^{2}(\theta )} \} ^{s/2}\{ ( {{H}^{\prime }_3 A_3 + {H}^{\prime }_4 A_4 } ) \cos ( {s{\psi }^{\prime }} ) \nonumber \\&\quad +( {{H}^{\prime }_3 A_4 - {H}^{\prime }_4 A_3 } )\sin ( {s{\psi }^{\prime }} ) \}\nonumber \\&\quad +\{ \cos ^{2}(\theta ) {+\zeta ^{2}\sin ^{2}(\theta )} \} ^{s/2}\{ ( {{H}^{\prime }_5 A_5 + {H}^{\prime }_6 A_6 } )\nonumber \\&\quad \times \cos ( {s{\psi }^{\prime \prime }} ) +( {{H}^{\prime }_5 A_6 - {H}^{\prime }_6 A_5 } )\sin ( {s{\psi }^{\prime \prime }} ) \} ]\nonumber \\&\quad +O( {r^{s+2}} ), \end{aligned}$$
(89c)

and

$$\begin{aligned}&\sigma _x ( {r,\theta ,z} )=r^{s-1}D_b ( z )_ ({ik})^{s}s \langle \{ ( {\cos (\theta )\!+\!\xi \sin (\theta )} )^{2} \nonumber \\&\quad + \eta ^{2}\sin ^{2}(\theta ) \}^{(s-1)/2}[ {( {A_1 } } \{ {{c}^{\prime }_{11} } +( {\xi H_1 -\eta H_2 } ){c}^{\prime }_{12}\nonumber \\&\quad +( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 } ){c}^{\prime }_{14} \} +A_2 \{ ( {\eta H_1 +\xi H_2 } ){c}^{\prime }_{12}\nonumber \\&\quad +( {\eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 } ){c}^{\prime }_{14} \} )\cos ( {( {s-1} )\psi } )\nonumber \\&\quad +( - A_1 \{ {( {\eta H_1 +\xi H_2 } ){c}^{\prime }_{12} +( {\eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 } ){c}^{\prime }_{14} } \}\nonumber \\&\quad \!+\!A_2 \{ {{c}^{\prime }_{11} } \!+\!( {\xi H_1 -\eta H_2 } ){c}^{\prime }_{12}+( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 } ) { {{c}^{\prime }_{14} } \} } )\nonumber \\&\quad \times {\sin ( {( {s-1} )\psi } )} ]+ \{ {( {\cos (\theta )-\xi \sin (\theta )} )^{2} } \nonumber \\&\quad +\eta ^{2}\sin ^{2}(\theta ) \} ^{(s-1)/2}[ {( {A_3 } } \{ {{c}^{\prime }_{11} } -( {\xi H_3 +\eta H_4 } ){c}^{\prime }_{12}\nonumber \\&\quad -( {\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 } ){c}^{\prime }_{14} \} +A_4 \{ ( {\eta H_3 -\xi H_4 } ){c}^{\prime }_{12} \nonumber \\&\quad +( \eta {H}^{\prime }_3 -\xi {H}^{\prime }_4 ){c}^{\prime }_{14} \} )\cos ( {( {s-1} ){\psi }^{\prime }} )\nonumber \\&\quad +( - A_3 \{ ( {\eta H_3 -\xi H_4 } ){c}^{\prime }_{12} +( {\eta {H}^{\prime }_3 -\xi {H}^{\prime }_4 } ){c}^{\prime }_{14} \}\nonumber \\&\quad +A_4 \{ {{c}^{\prime }_{11} } -( {\xi H_3 +\eta H_4 } ){c}^{\prime }_{12}\nonumber \\&\quad { {-( {\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 } ) {{c}^{\prime }_{14} } \} } )\sin ( {( {s-1} ){\psi }^{\prime }} )} ]\nonumber \\&\quad +\{{\cos ^{2}(\theta )} {+\zeta ^{2}\sin ^{2}(\theta )}\} ^{(s-1)/2}[ {( {A_5 } } \{ {c}^{\prime }_{11}- \zeta H_6 {c}^{\prime }_{12}\nonumber \\&\quad {-\zeta {H}^{\prime }_6 {c}^{\prime }_{14} } \} +A_6 \{ \zeta H_5 {c}^{\prime }_{12} +\zeta {H}^{\prime }_5{c}^{\prime }_{14} \} )\nonumber \\&\quad \times \cos ( {( {s-1}){\psi }^{\prime \prime }} )+( - A_5 \{ {\zeta H_5 {c}^{\prime }_{12} +\zeta {H}^{\prime }_5 {c}^{\prime }_{14} } \}\nonumber \\&\quad +A_6 \{ {{c}^{\prime }_{11} } { { {-\zeta H_6 {c}^{\prime }_{12} -\zeta {H}^{\prime }_6 {{c}^{\prime }_{14} } \} } )\sin ( {( {s-1} ){\psi }^{\prime \prime }} )} ]} \rangle \nonumber \\&\quad + O( {r^{s+1}} ),\end{aligned}$$
(90a)
$$\begin{aligned}&\sigma _y ( {r,\theta ,z} )=r^{s-1}D_b ( z )({ik})^{s}s \langle \{ ( {\cos (\theta )+\xi \sin (\theta )} )^{2}\nonumber \\&\quad + \eta ^{2}\sin ^{2}(\theta ) \}^{(s-1)/2} [{({A_1 } } \{ {{c}^{\prime }_{12} } {+( {\xi H_1 -\eta H_2 } ){c}^{\prime }_{22} } \} \nonumber \\&\quad +A_2 \{ ( \eta H_1+\xi H_2 ){c}^{\prime }_{22} \} )\cos ({( {s-1} )\psi } )\nonumber \\&\quad +( - A_1 \{ {( {\eta H_1 +\xi H_2 } ){c}^{\prime }_{22} } \}\nonumber \\&\quad +A_2 \{ {{c}^{\prime }_{12} } +( {\xi H_1 -\eta H_2 } ) { { {{c}^{\prime }_{22} } \} } )\sin ( {( {s-1} )\psi } )} ]\nonumber \\&\quad + \{ {( {\cos (\theta )-\xi \sin (\theta )} )^{2} } {+\eta ^{2}\sin ^{2}(\theta )} \} ^{(s-1)/2}\nonumber \\&\quad \times [ {( {A_3 } } \{ {{c}^{\prime }_{12} } {-( {\xi H_3 +\eta H_4 } ){c}^{\prime }_{22} } \} \nonumber \\&\quad +A_4 ( {\eta H_3 -\xi H_4 } ){c}^{\prime }_{22} )\cos ( {( {s-1} ){\psi }^{\prime }} )\nonumber \\&\quad +( - A_3 \{ {( {\eta H_3 -\xi H_4 } ){c}^{\prime }_{22} } \}\nonumber \\&\quad +A_4 \{ {{c}^{\prime }_{12} -( {\xi H_3 +\eta H_4 } ){c}^{\prime }_{22} \} )\sin ( {( {s-1} ){\psi }^{\prime }} ) ]} \nonumber \\&\quad +\{ {\cos ^{2}(\theta ) } {+\zeta ^{2}\sin ^{2}(\theta )} \} ^{(s-1)/2}\nonumber \\&\quad \!\times [ {( {A_5 } } \{ {c}^{\prime }_{12} \!-\!\zeta H_6 {c}^{\prime }_{22} \} \!+\!A_6 \zeta H_5 {c}^{\prime }_{22} ) \cos ( {( {s-1} ){\psi }^{\prime \prime }} )\nonumber \\&\quad +\{ -A_5 \zeta H_5 {c}^{\prime }_{22} + A_6 ( {c}^{\prime }_{12} -\zeta H_6 {c}^{\prime }_{22} ) \}\nonumber \\&\quad \times { {\sin ( {( {s-1} ){\psi }^{\prime \prime }} )} ]} \rangle + O( {r^{s+1}} ),\end{aligned}$$
(90b)
$$\begin{aligned}&\tau _{xy} ( {r,\theta ,z} )=r^{s-1}D_b ( z )( {ik} )^{s}s \langle \{ ( {\cos (\theta )+\xi \sin (\theta )} )^{2}\nonumber \\&\quad +\eta ^{2}\sin ^{2}(\theta ) \}^{(s-1)/2}[ {( {A_1 \{ {{c}^{\prime }_{56} } } } {H}^{\prime }_1+ {{c}^{\prime }_{66} ( {\xi +H_1 } )} \}\nonumber \\&\quad +A_2 \{ {c}^{\prime }_{56} {H}^{\prime }_2+{c}^{\prime }_{66} ( {\eta +H_2 } ) \} )\cos ( {( {s-1} )\psi } )\nonumber \\&\quad +( {-A_1 \{ {{c}^{\prime }_{56} {H}^{\prime }_2 +{c}^{\prime }_{66} } ( {\eta +H_2 } ) \} } \nonumber \\&\quad {+A_2 \{ {{c}^{\prime }_{56} {H}^{\prime }_1 +{c}^{\prime }_{66} ( {\xi +H_1 } )} \}} ) {\sin ( {( {s-1} )\psi } )} ]\nonumber \\&\quad +\{ ( {\cos (\theta )-\xi \sin (\theta )} )^{2}+\eta ^{2}\sin ^{2}(\theta ) \}^{(s-1)/2}\nonumber \\&\quad \times [ {( {A_3 \{ {{c}^{\prime }_{56} } } } {H}^{\prime }_3+ {{c}^{\prime }_{66} ( {-\xi +H_3 } )} \}\nonumber \\&\quad +A_4 \{ {c}^{\prime }_{56} {H}^{\prime }_4 +{c}^{\prime }_{66} ( {\eta +H_4 } ) \} )\cos ( {( {s-1} ){\psi }^{\prime }} )\nonumber \\&\quad +( {-A_3 \{ {{c}^{\prime }_{56} {H}^{\prime }_4 +{c}^{\prime }_{66} } ( {\eta +H_4 } ) \} } \nonumber \\&+A_{4}\{c_{56}^{\prime } H_{3}^{\prime }+c_{66}^{\prime }(-\xi +H_{3})\})\nonumber \\&\times \sin ((s-1)\psi ^{\prime })]+\{\cos ^{2}(\theta )+\zeta ^{2}\sin ^{2}(\theta )\}^{(s-1)/2}\nonumber \\&\quad \times [(A_{5}\{c_{56}^{\prime }H_{5}^{\prime }+ {{c}^{\prime }_{66} H_5 } \} + A_6 \{ {c}^{\prime }_{56} {H}^{\prime }_6 +{c}^{\prime }_{66} ( {\zeta +H_6 } ) \} )\nonumber \\&\quad \times \cos ( {( {s-1} ){\psi }^{\prime \prime }} )+( -A_5 \{ {c}^{\prime }_{56} {H}^{\prime }_6 \nonumber \\&\quad +{c}^{\prime }_{66} ( {\zeta +H_6 } )\} {+A_6 \{ {{c}^{\prime }_{56} {H}^{\prime }_5 +{c}^{\prime }_{66} H_5 } \}} )\nonumber \\&\quad \times {\sin ( {( {s-1} ){\psi }^{\prime \prime }} )} ] \rangle + O( {r^{s+1}} ),\end{aligned}$$
(90c)
$$\begin{aligned}&\sigma _z ( {r,\theta ,z} )=r^{s-1}D_b ( z ) ( {ik} )^{s}s \langle \{ ( {\cos (\theta )+\xi \sin (\theta )} )^{2} \nonumber \\&\quad + \eta ^{2}\sin ^{2}(\theta ) \}^{(s-1)/2}[ {( {A_1 } } \{ {{c}^{\prime }_{13} } + ( \xi H_1 -\eta H_2 ){c}^{\prime }_{23} \nonumber \\&\quad +( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 } ){c}^{\prime }_{34} \}+A_2 \{ ( {\eta H_1 +\xi H_2 } ){c}^{\prime }_{23}\nonumber \\&\quad +( \eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 ){c}^{\prime }_{34} \} )\cos ( {({s-1} )\psi } )\nonumber \\&\quad +( - A_1 \{ {( {\eta H_1 +\xi H_2 } ){c}^{\prime }_{23} +( {\eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 } ){c}^{\prime }_{34} } \}\nonumber \\&\quad +A_2 \{{{c}^{\prime }_{13} } +( {\xi H_1 -\eta H_2 } ){c}^{\prime }_{23}\nonumber \\&\quad +( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 } ) { { {{c}^{\prime }_{34} } \} } )\sin ( {( {s-1} )\psi } )} ]\nonumber \\&\quad + \{ ( \cos (\theta )-\xi \sin (\theta ) )^{2} {+\eta ^{2}\sin ^{2}(\theta )} \} ^{(s-1)/2} \nonumber \\&\quad \times [ {( {A_3 } } \{ {{c}^{\prime }_{13} } {-( {\xi H_3 +\eta H_4 } ){c}^{\prime }_{23} -( {\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 } ){c}^{\prime }_{34} } \} \nonumber \\&\quad +A_4 \{ {( {\eta H_3 -\xi H_4 } ){c}^{\prime }_{23} +( {\eta {H}^{\prime }_3 -\xi {H}^{\prime }_4 } ){c}^{\prime }_{34} } \} )\nonumber \\&\quad \times \cos ( {( {s-1} ){\psi }^{\prime }} )+( - A_3 \{ ( {\eta H_3 -\xi H_4 } ){c}^{\prime }_{23} \nonumber \\&\quad +( {\eta {H}^{\prime }_3 -\xi {H}^{\prime }_4 } ){c}^{\prime }_{34} \}_ +A_4 \{ {{c}^{\prime }_{13} } -( {\xi H_3 +\eta H_4 } ){c}^{\prime }_{23}\nonumber \\&\quad { {-( {\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 } ) {{c}^{\prime }_{34} } \} } )\sin ( {( {s-1} ){\psi }^{\prime }} )} ]\nonumber \\&\quad +\{ {\cos ^{2}(\theta )} {+\zeta ^{2}\sin ^{2}(\theta )} \} ^{(s-1)/2}[ {( {A_5 } } \{ {{c}^{\prime }_{13} } -\zeta H_6 {c}^{\prime }_{23}\nonumber \\&\quad { {-\zeta {H}^{\prime }_6 {c}^{\prime }_{34} } \} +A_6 \zeta \{ {H_5 {c}^{\prime }_{23} +{H}^{\prime }_5 {c}^{\prime }_{34} } \}} )\nonumber \\&\quad \times \cos ( {( {s-1} ){\psi }^{\prime \prime }} )+( - A_5 \zeta \{ {H_5 {c}^{\prime }_{23} +{H}^{\prime }_5 {c}^{\prime }_{34} } \}\nonumber \\&\quad { { {+A_6 \{ {{c}^{\prime }_{13} } -\zeta H_6 {c}^{\prime }_{23} -\zeta {H}^{\prime }_6 {{c}^{\prime }_{34} } \} } )\sin ( {( {s-1} ){\psi }^{\prime \prime }} )} ]} \rangle \nonumber \\&\quad + O( {r^{s+1}} ),\end{aligned}$$
(90d)
$$\begin{aligned}&\tau _{xz} ( {r,\theta ,z} )=r^{s-1}D_b ( z )( {ik} )^{s}s \langle \{ ( {\cos (\theta )+\xi \sin (\theta )} )^{2}\nonumber \\&\quad +\eta ^{2}\sin ^{2}(\theta ) \}^{(s-1)/2}[ {( {A_1 \{ {{c}^{\prime }_{55} {H}^{\prime }_1 } } } + {{c}^{\prime }_{56} ( {\xi +H_1 } )} \}\nonumber \\&\quad +A_2 \{ {c}^{\prime }_{55} {H}^{\prime }_2+{c}^{\prime }_{56} ( {\eta +H_2 } ) \})\cos ( {( {s-1} )\psi } )\nonumber \\&\quad +( {-A_1\{ {{c}^{\prime }_{55} {H}^{\prime }_2 +{c}^{\prime }_{56} } ( {\eta +H_2 } ) \} } \nonumber \\&\quad {+A_2 \{ {{c}^{\prime }_{55} {H}^{\prime }_1 +{c}^{\prime }_{56} ( {\xi +H_1 } )} \}} ) {\sin ( {( {s-1} )\psi } )} ]\nonumber \\&\quad +\{ ( {\cos (\theta )-\xi \sin (\theta )} )^{2}+\eta ^{2}\sin ^{2}(\theta ) \}^{(s-1)/2}\nonumber \\&\quad \times [ {( {A_3 \{ {{c}^{\prime }_{55} } } } {H}^{\prime }_3+ {{c}^{\prime }_{56} ( {-\xi +H_3 } )} \} +A_4 \{ {c}^{\prime }_{55} {H}^{\prime }_4\nonumber \\&\quad +{c}^{\prime }_{56} ( {\eta +H_4 } ) \} )\cos ( {( {s-1} ){\psi }^{\prime }} )\nonumber \\&\quad +( {-A_3 \{ {{c}^{\prime }_{55} {H}^{\prime }_4 +{c}^{\prime }_{56} ( {\eta +H_4 } )} \}} \nonumber \\&\quad {+A_4 \{ {{c}^{\prime }_{55} {H}^{\prime }_3 +{c}^{\prime }_{56} ( {-\xi +H_3 } )} \}} ) {\sin ( {( {s-1} ){\psi }^{\prime }} )} ]\nonumber \\&\quad +\{ {\cos ^{2}(\theta )} {+\zeta ^{2}\sin ^{2}(\theta )} \} ^{(s-1)/2}[ {( {A_5 \{ {{c}^{\prime }_{55} } } } {H}^{\prime }_5\nonumber \\&\quad + {{c}^{\prime }_{56} H_5 } \} + {A_6 \{ {{c}^{\prime }_{55} {H}^{\prime }_6 +{c}^{\prime }_{56} ( {\zeta +H_6 } )} \}} )\nonumber \\&\quad \times \cos ( {( {s-1} ){\psi }^{\prime \prime }} )+( {-A_5 \{{{c}^{\prime }_{55} {H}^{\prime }_6 +{c}^{\prime }_{56} ( {\zeta +H_6 } )} \}} \nonumber \\&\quad {+A_6 \{ {{c}^{\prime }_{55} {H}^{\prime }_5 +{c}^{\prime }_{56} H_5 } \}} ) {\sin ( {( {s-1} ){\psi }^{\prime \prime }} )} ] \rangle \nonumber \\&\quad + O( {r^{s+1}} ),\end{aligned}$$
(90e)
$$\begin{aligned}&\tau _{yz} ( {r,\theta ,z} )=r^{s-1}D_b ( z ) ( {ik} )^{s}s \nonumber \\&\quad \times \langle \{ ( {\cos (\theta )+\xi \sin (\theta )} )^{2}+ \eta ^{2}\sin ^{2}(\theta ) \}^{(s-1)/2}\nonumber \\&\quad \times [ {( {A_1 } } \{ {{c}^{\prime }_{14} } {+( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 } ){c}^{\prime }_{44} } \}\nonumber \\&\quad +A_2 \{ ( \eta {H}^{\prime }_1+\xi {H}^{\prime }_2 ){c}^{\prime }_{44} \} ) \cos ( {( {s-1} )\psi } )\nonumber \\&\quad +(- A_1 \{ {( {\eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 } ){c}^{\prime }_{44} } \}\nonumber \\&\quad +A_2 \{ {{c}^{\prime }_{14} } +( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 } ) { { {{c}^{\prime }_{44} } \} } )\sin ( {( {s-1} )\psi } )} ]\nonumber \\&\quad + \{ {( {\cos (\theta )-\xi \sin (\theta )} )^{2}} {+\eta ^{2}\sin ^{2}(\theta )} \} ^{(s-1)/2}\nonumber \\&\quad \times {[ {( {A_3 } } \{ {{c}^{\prime }_{14} } -( {\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 } ){c}^{\prime }_{44} } \} \nonumber \\&\quad +A_4 \{ {( {\eta {H}^{\prime }_3 -\xi {H}^{\prime }_4 } ){c}^{\prime }_{44} } \} )\cos ( {( {s-1} ){\psi }^{\prime }} )\nonumber \\&\quad +( - A_3 \{ {( {\eta {H}^{\prime }_3 -\xi {H}^{\prime }_4 } ){c}^{\prime }_{44} } \}_ +A_4 \{ {{c}^{\prime }_{14} } \nonumber \\&\quad -(\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 ) {{c}^{\prime }_{44} } \} )\sin ( {( {s-1} ){\psi }^{\prime }} ) ]\nonumber \\&\quad +\{ {\cos ^{2}(\theta ) } {+\zeta ^{2}\sin ^{2}(\theta )} \} ^{(s-1)/2}[ ( {A_5 } \{ {c}^{\prime }_{14} \nonumber \\&\quad -\zeta {H}^{\prime }_6 {c}^{\prime }_{44} \} +A_6 \zeta {H}^{\prime }_5 {c}^{\prime }_{44} ) \cos ( {( {s-1} ){\psi }^{\prime \prime }} )\nonumber \\&\quad +( - A_5 \zeta {H}^{\prime }_5 {c}^{\prime }_{44} +A_6 \{ {{c}^{\prime }_{14} } {-\zeta {H}^{\prime }_6 {{c}^{\prime }_{44} } \} })\nonumber \\&\quad \times \sin ( {( {s-1} ){\psi }^{\prime \prime }} )]\rangle + O( {r^{s+1}} ), \end{aligned}$$
(90f)

in which

$$\begin{aligned}&A_1 = \overline{{A}}_1 + \overline{{A}}_2 , \quad A_2 = i \left( {\overline{{A}}_1- \overline{{A}}_2 } \right) ,\end{aligned}$$
(91a)
$$\begin{aligned}&A_3 = \overline{{A}}_3 + \overline{{A}}_4 , \quad A_4 = i \left( {\overline{{A}}_3 - \overline{{A}}_4 } \right) ,\end{aligned}$$
(91b)
$$\begin{aligned}&A_5 = \overline{{A}}_5 + \overline{{A}}_6 , \quad A_6 = i \left( {\overline{{A}}_5 - \overline{{A}}_6 } \right) , \end{aligned}$$
(91c)

and

$$\begin{aligned} D_b (z) = D_1 \sin \left( {kz} \right) +D_2 \cos \left( {kz} \right) , \end{aligned}$$
(92)

with

$$\begin{aligned} D_1&= i{\overline{\overline{{D}}}}_1,\end{aligned}$$
(93a)
$$\begin{aligned} D_2&= {\overline{\overline{D}}}_2 . \end{aligned}$$
(93b)

It may be noted that since s or Re s (when s is complex) is positive, all the higher order terms in Eqs. (89) and (90) vanish as r \(\rightarrow 0\). The components of displacement can now be expressed in the cylindrical polar coordinate system as follows:

$$\begin{aligned}&u_r (r,\theta ,z) = r^{s}D_b ( z ) ( {ik} )^{s} \langle \{ ( \cos (\theta ) \nonumber \\&\quad +\xi \sin (\theta ) )^{2} + \eta ^{2}\sin ^{2}(\theta ) \}^{^{s/2}} [ { \{ {A_1 \cos ( \theta ) } } \nonumber \\&\quad {+ ( {H_1 A_1 +H_2 A_2 } )\sin (\theta )} \} \cos ( {s\psi } ) \nonumber \\&\quad + { \{ {A_2 \cos ( \theta ) + ( {H_1 A_2 -H_2 A_1 } )\sin (\theta )} \} \sin ( {s\psi } )} ]\nonumber \\&\quad + \{ { ( {\cos (\theta )-\xi \sin (\theta )} )^{2}+\eta ^{2}\sin ^{2}(\theta )} \}^{s/2} [ \{ A_3 \cos ( \theta ) \nonumber \\&\quad + ( {H_3 A_3 -H_4 A_4 } )\sin (\theta ) \}\cos ( {s{\psi }^{\prime }} ) \nonumber \\&\quad + { \{ {A_4 \cos ( \theta ) + ( {H_3 A_4 -H_4 A_3 } )\sin (\theta )} \} \sin ( {s{\psi }^{\prime }} )} ]\nonumber \\&\quad + \{ {\cos ^{2}(\theta ) + \zeta ^{2}\sin ^{2}(\theta )} \}^{s/2} [ { \{ {A_5 \cos ( \theta ) } } \nonumber \\&\quad {+ ( {H_5 A_5 +H_6 A_6 } )\sin (\theta )} \} \cos ( {s{\psi }^{\prime \prime }} ) \nonumber \\&\quad + { \{ {A_6 \cos ( \theta ) + ( {H_5 A_6 -H_6 A_5 } )\sin (\theta )} \} \sin ( {s{\psi }^{\prime \prime }} )} ] \rangle \nonumber \\&\quad + O ( {r^{s+2}} ),\end{aligned}$$
(94a)
$$\begin{aligned}&u_\theta (r,\theta ,z) = r^{s}D_b ( z ) ( {ik} )^{s} \langle \{ ( {\cos (\theta )+\xi \sin (\theta )} )^{2} \nonumber \\&\quad + \eta ^{2}\sin ^{2}(\theta ) \}^{^{s/2}} [ { \{ {-A_1 \sin ( \theta ) } } \nonumber \\&\quad {+ ( {H_1 A_1 +H_2 A_2 } )\cos (\theta )} \} \cos ( {s\psi } ) \nonumber \\&\quad + { \{ {-A_2 \sin ( \theta ) + ( {H_1 A_2 -H_2 A_1 } )\cos (\theta )} \} \sin ( {s\psi } )} ]\nonumber \\&\quad + \{ { ( {\cos (\theta )\!-\!\xi \sin (\theta )} )^{2} \!+\! \eta ^{2}\sin ^{2}(\theta )} \}^{s/2} [- \{A_3 \sin ( \theta ) \nonumber \\&\quad + ( {H_3 A_3 +} { {H_4 A_4 } )\cos (\theta )} \} \cos ( {s{\psi }^{\prime }} )\nonumber \\&\quad + { \{ {-A_4 \sin ( \theta ) + ( {H_3 A_4 -H_4 A_3 } )\cos (\theta )} \} \sin ( {s{\psi }^{\prime }} )} ]\nonumber \\&\quad + \{ {\cos ^{2}(\theta ) + \zeta ^{2}\sin ^{2}(\theta )} \}^{s/2} [ { \{ {-A_5 \sin ( \theta )} } \nonumber \\&\quad + ( {H_5 A_5 +H_6 A_6 } )\cos (\theta ) \} \cos ( {s{\psi }^{\prime \prime }} ) + \{ -A_6 \sin ( \theta ) \nonumber \\&\quad + ( {H_5 A_6 -H_6 A_5 } )\cos (\theta ) \} \sin ( {s{\psi }^{\prime \prime }} ) ] \rangle \nonumber \\&\quad + O ( {r^{s+2}} ), \end{aligned}$$
(94b)

\(w(r,\theta ,z)\) is given as before by Eq. (89c).

Similarly, the components of the asymptotic stress field can be conveniently expressed by using standard transformation rule:

$$\begin{aligned} \left\{ {{\begin{array}{c} {\sigma _r } \\ {\sigma _\theta } \\ {\tau _{r\theta }} \\ \end{array} }}\right\} \!&= \!\left[ {{\begin{array}{ccc} {\cos ^{2}\theta }&{} {\sin ^{2}\theta }&{} {\sin \left( {2\theta } \right) } \\ {\sin ^{2}\theta }&{} {\cos ^{2}\theta }&{} {-\sin \left( {2\theta } \right) } \\ {-\frac{1}{2}\sin \left( {2\theta } \right) }&{} {\frac{1}{2}\sin \left( {2\theta } \right) }&{} {\cos \left( {2\theta } \right) } \\ \end{array} }} \right] \left\{ {{\begin{array}{c} {\sigma _x } \\ {\sigma _y } \\ {\tau _{xy} } \\ \end{array} }} \right\} ,\end{aligned}$$
(95a)
$$\begin{aligned} \left\{ {{\begin{array}{c} {\tau _{rz} } \\ {\tau _{\theta z} } \\ \end{array} }} \right\} \!&= \!\left[ {{\begin{array}{cc} {\cos \theta }&{} {\sin \theta } \\ {-\sin \theta }&{} {\cos \theta } \\ \end{array} }} \right] \left\{ {{\begin{array}{c} {\tau _{xz} } \\ {\tau _{yz} } \\ \end{array} }} \right\} . \end{aligned}$$
(95b)

The stress component, \(\sigma _{z}\), is as given in Eq. (90d).

Appendix C: Definition of certain constants referred to in Sect. 4

The constants, \(T_{11} ,{\ldots }, T_{34} \), referred to in Eqs. (13) and (19) are given as follows:

$$\begin{aligned}&T_{11} =t_1 +{t}^{\prime \prime }_2 t_{21} +{t}^{\prime \prime }_1 t_{22},\quad T_{12} =t_2 -{t}^{\prime \prime }_1 t_{21} +{t}^{\prime \prime }_2 t_{22},\nonumber \\&T_{13} ={t}^{\prime }_1 +{t}^{\prime \prime }_2 t_{23} +{t}^{\prime \prime }_1 t_{24},\quad T_{14} ={t}^{\prime }_2 -{t}^{\prime \prime }_1 t_{23} +{t}^{\prime \prime }_2 t_{24},\nonumber \\&T_{21} =t_3 +t_7 t_{22} +t_8 t_{21},\quad T_{22} =-t_4 -t_7 t_{21} +t_8 t_{22} ,\nonumber \\&T_{23} =t_5 +t_7 t_{24} +t_8 t_{23},\quad T_{24} \!=\!-t_6 -t_7 t_{23} +t_8 t_{24}, \nonumber \\&T_{31} =t_9 +t_{13} t_{22} +t_{14} t_{21},\quad T_{32} \!=\!-t_{10} \!-\!t_{13} t_{21} \!+\!t_{14} t_{22},\nonumber \\&T_{33} =t_{11} \!+\!t_{13} t_{24} +t_{14} t_{23},\quad T_{34} =-t_{12} -t_{13} t_{23} +t_{14} t_{24}, \end{aligned}$$
(96)

in which

$$\begin{aligned}&t_1 ={c}^{\prime }_{56} {H}^{\prime }_1 +{c}^{\prime }_{66} \xi , \quad t_2 ={c}^{\prime }_{56} {H}^{\prime }_2 +{c}^{\prime }_{66} \eta ,\nonumber \\&{t}^{\prime }_1 ={c}^{\prime }_{56} {H}^{\prime }_3 -{c}^{\prime }_{66} \xi , \quad {t}^{\prime }_2 ={c}^{\prime }_{56} {H}^{\prime }_4 +{c}^{\prime }_{66} \eta ,\nonumber \\&{t}^{\prime \prime }_1 ={c}^{\prime }_{56} {H}^{\prime }_5 ,\quad {t}^{\prime \prime }_2 ={c}^{\prime }_{56} {H}^{\prime }_6 +{c}^{\prime }_{66} \zeta ,\nonumber \\&t_3 ={c}^{\prime }_{22} ( {\eta H_1 +\xi H_2 } ),\quad t_4 ={c}^{\prime }_{12} +{c}^{\prime }_{22} ( {\xi H_1 -\eta H_2 } ),\nonumber \\&t_5 ={c}^{\prime }_{22} ( {\eta H_3 -\xi H_4 } ),\quad t_6 ={c}^{\prime }_{12} -{c}^{\prime }_{22} ( {\xi H_3 +\eta H_4 } ), \nonumber \\&t_7 \!=\!{c}^{\prime }_{22} \zeta H_5,\quad t_8 \!=\!{c}^{\prime }_{12} \!-\!{c}^{\prime }_{22} \zeta H_6 ,\nonumber \\&t_9 \!=\!{c}^{\prime }_{56} {H}^{\prime }_2 \!+\!{c}^{\prime }_{66} ({\eta \!+\!H_2 } ),\,\, t_{10} \!=\!{c}^{\prime }_{56} {H}^{\prime }_1 \!+\!{c}^{\prime }_{66} ( {\xi \!+\!H_1 } ), \nonumber \\&t_{11} \!=\!{c}^{\prime }_{56} {H}^{\prime }_4 \!+\!{c}^{\prime }_{66} ( {\eta \!+\!H_4 } ),\,\,t_{12} \!=\!{c}^{\prime }_{56} {H}^{\prime }_3 \!-\!{c}^{\prime }_{66} ( {\xi \!-\!H_3 } ),\nonumber \\&t_{13} ={c}^{\prime }_{56} {H}^{\prime }_6 +{c}^{\prime }_{66} ( {\zeta +H_6 } ),\,\,t_{14} ={c}^{\prime }_{56} {H}^{\prime }_5 +{c}^{\prime }_{66} H_5 ,\nonumber \\&t_{15} \!=\!{c}^{\prime }_{14} \!+\!{c}^{\prime }_{44} ( {\xi {H}^{\prime }_1 \!-\!\eta {H}^{\prime }_2 } ),\,\, t_{16} \!=\!{c}^{\prime }_{44} ( {\eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 } ),\nonumber \\&t_{17} ={c}^{\prime }_{14} -{c}^{\prime }_{44} ( {\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 } ),\,\, t_{18} ={c}^{\prime }_{44} ( {\eta {H}^{\prime }_3 \!-\!\xi {H}^{\prime }_4 } ), \nonumber \\&t_{19} ={c}^{\prime }_{14} -{c}^{\prime }_{44} \zeta {H}^{\prime }_6 ,\quad t_{20} ={c}^{\prime }_{44} \zeta {H}^{\prime }_5 ,\nonumber \\&t_{21} \!=\!-\frac{ ( {t_{15} t_{20} \!-\!t_{16} t_{19} } )}{ ( {t_{19}^2 \!+\!t_{20}^2 } )},\quad t_{22} \!=\!-\frac{ ( {t_{15} t_{19} +t_{16} t_{20} } )}{ ( {t_{19}^2 +t_{20}^2 } )},\nonumber \\&t_{23}\!=\!-\frac{ ( {t_{17} t_{20} \!-\!t_{18} t_{19} } )}{ ( {t_{19}^2 \!+\!t_{20}^2 } )},\quad t_{24} \!=\!-\frac{ ( {t_{17} t_{19} \!+\!t_{18} t_{20} } )}{ ( {t_{19}^2 +t_{20}^2 } )}.\qquad \end{aligned}$$
(97)

The constants, \({T}^{\prime }_{11} ,{\ldots }, {T}^{\prime }_{14} \), referred to in Eqs. (19) are written as follows:

$$\begin{aligned} {T}^{\prime }_{11} \!=\!1\!+\!t_{22},\quad {T}^{\prime }_{12} \!=\!-t_{21} , {T}^{\prime }_{13} \!=\!1\!+\!t_{24},\quad {T}^{\prime }_{14} \!=\!-t_{23}.\nonumber \\ \end{aligned}$$
(98)

The constants, \({T}^{\prime \prime }_{11},{\ldots },{T}^{\prime \prime }_{34}\), referred to in Eqs.(25) can be written as follows:

$$\begin{aligned}&{T}^{\prime \prime }_{11} \!=\!{H}^{\prime }_1 \!+\!{H}^{\prime }_3 t_{25} \!-\!{H}^{\prime }_4 t_{26},\quad {T}^{\prime \prime }_{12} \!=\!{H}^{\prime }_2 \!+\!{H}^{\prime }_3 t_{26} +{H}^{\prime }_4 t_{25} ,\nonumber \\&{T}^{\prime \prime }_{13} \!=\!{H}^{\prime }_5 \!+\!{H}^{\prime }_3 t_{27} \!-\!{H}^{\prime }_4 t_{28},\quad {T}^{\prime \prime }_{14} \!=\!{H}^{\prime }_6 \!+\!{H}^{\prime }_3 t_{28} +{H}^{\prime }_4 t_{27},\nonumber \\&{T}^{\prime \prime }_{21} \!=\!t_4 +t_6 t_{25} -t_5 t_{26},\quad {T}^{\prime \prime }_{22} =t_3 +t_6 t_{26} +t_5 t_{25} ,\nonumber \\&{T}^{\prime \prime }_{23} \!=\!t_8 +t_6 t_{27} -t_5 t_{28},\quad {T}^{\prime \prime }_{24} =t_7 +t_6 t_{28} +t_5 t_{27} ,\nonumber \\&{T}^{\prime \prime }_{31} \!=\!t_3 +t_5 t_{25} \!+\!t_6 t_{26},\quad {T}^{\prime \prime }_{32} =-t_4 +t_5 t_{26} -t_6 t_{25} ,\nonumber \\&{T}^{\prime \prime }_{33} =t_7 \!+\!t_5 t_{27} +t_6 t_{28},\quad {T}^{\prime \prime }_{34} \!=\!-t_8 \!+\!t_5 t_{28} \!-\!t_6 t_{27} , \end{aligned}$$
(99)

where

$$\begin{aligned}&t_{25} =-\frac{\left( {t_9 t_{11} +t_{10} t_{12} } \right) }{\left( {t_{11}^2 +t_{12}^2 } \right) },\quad t_{26} =-\frac{\left( {t_9 t_{12} -t_{10} t_{11} } \right) }{\left( {t_{11}^2 +t_{12}^2 } \right) },\nonumber \\&t_{27} =-\frac{\left( {t_{12} t_{14} +t_{11} t_{13} } \right) }{\left( {t_{11}^2 +t_{12}^2 } \right) },\quad t_{28} =-\frac{\left( {t_{12} t_{13} -t_{11} t_{14} } \right) }{\left( {t_{11}^2 +t_{12}^2 } \right) }.\nonumber \\ \end{aligned}$$
(100)

Finally, the constants, \(\Delta _1 , \Delta _2 , \Delta _3\), referred to in Eqs. (13), (19) and (25), respectively, are given as follows:

$$\begin{aligned} \Delta _1 \!&= \!T_{12} \left( {T_{23} T_{34} -T_{24} T_{33} } \right) -T_{13} \left( {T_{22} T_{34} -T_{24} T_{32} } \right) \nonumber \\&+T_{14} \left( {T_{22} T_{33} -T_{23} T_{32} } \right) ,\end{aligned}$$
(101a)
$$\begin{aligned} \Delta _2 \!&= \!{T}^{\prime }_{11} \left( {T_{23} T_{34} -T_{24} T_{33} } \right) -{T}^{\prime }_{13} \left( {T_{21} T_{34} -T_{24} T_{31} } \right) \nonumber \\&+{T}^{\prime }_{14} \left( {T_{21} T_{33} -T_{23} T_{31} } \right) ,\end{aligned}$$
(101b)
$$\begin{aligned} \Delta _3 \!&= \!{T}^{\prime \prime }_{11} \left( {{T}^{\prime \prime }_{22} {T}^{\prime \prime }_{33} -{T}^{\prime \prime }_{23} {T}^{\prime \prime }_{32} } \right) -{T}^{\prime \prime }_{12} \left( {{T}^{\prime \prime }_{21} {T}^{\prime \prime }_{33} -{T}^{\prime \prime }_{23} {T}^{\prime \prime }_{31} } \right) \nonumber \\&+{T}^{\prime \prime }_{13} \left( {{T}^{\prime \prime }_{21} {T}^{\prime \prime }_{32} -{T}^{\prime \prime }_{22} {T}^{\prime \prime }_{31} } \right) . \end{aligned}$$
(101c)

Appendix D: Definition of certain constants referred to in Sect. 7

The constants, \(\Gamma _{11} ,{\ldots }, \Gamma _{36}\), referred to in Eqs. (17), (23) and (29) are given as follows:

$$\begin{aligned} \Gamma _{11}&= \frac{1}{[ { {\{ {{c}^{\prime }_{12} } +( {\xi H_1 -\eta H_2 } ){c}^{\prime }_{22} } \} +Q_{11} \{ {( {\eta H_1 +\xi H_2 } ){c}^{\prime }_{22} } \}} ]}\nonumber \\&\times [{{c}^{\prime }_{11} +( {\xi H_1 -\eta H_2 } ){c}^{\prime }_{12} } +( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 } ){c}^{\prime }_{14}\nonumber \\&+Q_{11} \{ ( {\eta H_1 +\xi H_2 } ){c}^{\prime }_{12} +( {\eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 } ){c}^{\prime }_{14} \}\nonumber \\&+ Q_{12} \{ {{c}^{\prime }_{11} }\,\, {-( {\xi H_3 +\eta H_4 } ){c}^{\prime }_{12} -( {\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 } ){c}^{\prime }_{14} } \}\nonumber \\&+Q_{13} \{ {( {\eta H_3 -\xi H_4 } ){c}^{\prime }_{12} +( {\eta {H}^{\prime }_3 -\xi {H}^{\prime }_4 } ){c}^{\prime }_{14} } \}\nonumber \\&+Q_{14} \{ {{c}^{\prime }_{11} } {-{c}^{\prime }_{12} \zeta H_6 -{c}^{\prime }_{14} \zeta {H}^{\prime }_6 } \}\nonumber \\&{+Q_{15} \{ {{c}^{\prime }_{12} \zeta H_5 +{c}^{\prime }_{14} \zeta {H}^{\prime }_5 } \}} ], \end{aligned}$$
(102a)
$$\begin{aligned} \Gamma _{12}&= 1+\frac{Q_{12} \{ {{c}^{\prime }_{12} {-( {\xi H_3 +\eta H_4 } ){c}^{\prime }_{22} } \} +Q_{13} \{ {( {\eta H_3 -\xi H_4 } ){c}^{\prime }_{22} } \}} }{ {\{ {{c}^{\prime }_{12} } +( {\xi H_1 -\eta H_2 } ){c}^{\prime }_{22} } \} +Q_{11} \{ {( {\eta H_1 +\xi H_2 } ){c}^{\prime }_{22} } \}}\nonumber \\&\!+\frac{Q_{14} \{ {{c}^{\prime }_{12} {\!-\!\zeta H_6 {c}^{\prime }_{22} } \} \!+\!Q_{15} \zeta H_5 {c}^{\prime }_{22} } }{ {\{ {{c}^{\prime }_{12} } \!+\!( {\xi H_1 \!-\!\eta H_2 } ){c}^{\prime }_{22} } \} \!+\!Q_{11} \{ {( {\eta H_1 +\xi H_2 } ){c}^{\prime }_{22} } \}}, \end{aligned}$$
(102b)
$$\begin{aligned} \Gamma _{13}&= \frac{1}{[ { {\{ {{c}^{\prime }_{12} } +( {\xi H_1 -\eta H_2 } ){c}^{\prime }_{22} } \} +Q_{11} \{ {( {\eta H_1 +\xi H_2 } ){c}^{\prime }_{22} } \}} ]}\nonumber \\&\times \, [{c}^{\prime }_{13} +{c}^{\prime }_{23} ( {\xi H_1 -\eta H_2 } )+{c}^{\prime }_{34} ( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 })\nonumber \\&+Q_{11} \{ {{c}^{\prime }_{23} ( {\eta H_1 } } {+\xi H_2 } )+{c}^{\prime }_{34} ( {\eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 } ) \}\nonumber \\&+Q_{12} \{ {{c}^{\prime }_{13} } {-( {\xi H_3 +\eta H_4 } ){c}^{\prime }_{23} -( {\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 } ){c}^{\prime }_{34} } \} \nonumber \\&+Q_{13} \{ {{c}^{\prime }_{23} } ( {\eta H_3 -\xi H_4 } ) {+{c}^{\prime }_{34} ( {\eta {H}^{\prime }_3 -\xi {H}^{\prime }_4 } )} \}\nonumber \\&{+Q_{14} \{ {{c}^{\prime }_{13} } -{c}^{\prime }_{23} \zeta H_6 -{c}^{\prime }_{34} \zeta {H}^{\prime }_6 } \}\nonumber \\&+Q_{15} \{ {{c}^{\prime }_{23} } \zeta H_5 +{c}^{\prime }_{34} { {\zeta {H}^{\prime }_5 } \} } ],\end{aligned}$$
(102c)
$$\begin{aligned} \Gamma _{14}&= \frac{1}{[ { {\{ {{c}^{\prime }_{12} } +( {\xi H_1 -\eta H_2 } ){c}^{\prime }_{22} } \} +Q_{11} \{ {( {\eta H_1 +\xi H_2 } ){c}^{\prime }_{22} } \}} ]}\nonumber \\&\times \,[ {c}^{\prime }_{14} +{c}^{\prime }_{44} ( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 } )+Q_{11} {c}^{\prime }_{44} ( {\eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 } )\nonumber \\&+ {Q_{12} \{ {{c}^{\prime }_{14} } -( {\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 } ){c}^{\prime }_{44} } \} +Q_{13} {c}^{\prime }_{44} ( {\eta {H}^{\prime }_3 -\xi {H}^{\prime }_4 } )\nonumber \\&{+Q_{14} \{ {{c}^{\prime }_{14} {-{c}^{\prime }_{44} \zeta {H}^{\prime }_6 } \} } +Q_{15} {c}^{\prime }_{44} \zeta {H}^{\prime }_5 } ],\end{aligned}$$
(102d)
$$\begin{aligned} \Gamma _{15}&= \frac{1}{[ { {\{ {{c}^{\prime }_{12} } +( {\xi H_1 -\eta H_2 } ){c}^{\prime }_{22} } \} +Q_{11} \{ {( {\eta H_1 +\xi H_2 } ){c}^{\prime }_{22} } \}} ]}\nonumber \\&\times \,[ {{c}^{\prime }_{55} } +{c}^{\prime }_{56} ( {\xi +H_1 } )+Q_{11} \{ {{c}^{\prime }_{55} } +{c}^{\prime }_{56} {( {\eta +H_2 } )} \} \nonumber \\&+Q_{12} \{ {{c}^{\prime }_{55} } - {{c}^{\prime }_{56} ( {\xi -H_3 } )} \} +Q_{13} \{ {{c}^{\prime }_{55} } +{c}^{\prime }_{56} {( {\eta +H_4 } )} \}\nonumber \\&+Q_{14} \{ {{c}^{\prime }_{55} } + {{c}^{\prime }_{56} H_5 } \} +Q_{15} \{ {{c}^{\prime }_{55} +{c}^{\prime }_{56} ( {\zeta +H_6 } )} \},\end{aligned}$$
(102e)
$$\begin{aligned} \Gamma _{16}&= \frac{1}{[ { {\{ {{c}^{\prime }_{12} } +( {\xi H_1 -\eta H_2 } ){c}^{\prime }_{22} } \} +Q_{11} \{ {( {\eta H_1 +\xi H_2 } ){c}^{\prime }_{22} } \}} ]}\nonumber \\&\times \, [ {\{ {{c}^{\prime }_{56} {H}^{\prime }_1 {+{c}^{\prime }_{66} ( {\xi +H_1 } )} \} } } +Q_{11} \{ {{c}^{\prime }_{56} {H}^{\prime }_2 +{c}^{\prime }_{66} ( {\eta +H_2 } )} \}\nonumber \\&+Q_{12} \{ {{c}^{\prime }_{56} } {H}^{\prime }_3 - {{c}^{\prime }_{66} ( {\xi -H_3 } )} \} +Q_{13} \{ {{c}^{\prime }_{56} {H}^{\prime }_4 +{c}^{\prime }_{66} ( {\eta +H_4 } )} \}\nonumber \\&+Q_{14} \{ {{c}^{\prime }_{56} {H}^{\prime }_5 } + {{c}^{\prime }_{66} H_5 } \} +Q_{15} \{ {{c}^{\prime }_{56} {H}^{\prime }_6 +{c}^{\prime }_{66} ( {\zeta +H_6 } )} \} ],\nonumber \\ \end{aligned}$$
(102f)
$$\begin{aligned} \Gamma _{21}&= \frac{1}{[ {{c}^{\prime }_{56} {H}^{\prime }_2 +{c}^{\prime }_{66} ( {\eta +H_2 } )+Q_{21} \{ {{c}^{\prime }_{56} {H}^{\prime }_1 +{c}^{\prime }_{66} ( {\xi +H_1 } )} \}} ]}\nonumber \\&\times [ {( {Q_{21} } } \{ {{c}^{\prime }_{11} } + {{c}^{\prime }_{12} ( {\xi H_1 -\eta H_2 } )+{c}^{\prime }_{14} ( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 } )} \}\nonumber \\&+{c}^{\prime }_{12} ( {\eta H_1 +\xi H_2 } )+{c}^{\prime }_{14} ( {\eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 } )\nonumber \\&+Q_{22} \{ {{c}^{\prime }_{11} -{c}^{\prime }_{12} ( {\xi H_3 +\eta H_4 } )} {-{c}^{\prime }_{14} ( {\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 } )} \}\nonumber \\&+Q_{23} \{ {{c}^{\prime }_{12} ( {\eta H_3 -\xi H_4 } )} {+{c}^{\prime }_{14} ( {\eta {H}^{\prime }_3 -\xi {H}^{\prime }_4 } )} \}\nonumber \\&+Q_{24} \{ {{c}^{\prime }_{11} } \!-\!\zeta {( {{c}^{\prime }_{12} H_6 \!+\!{c}^{\prime }_{14} {H}^{\prime }_6 } )} \}\nonumber \\&+ Q_{25} \zeta \{ {( {{c}^{\prime }_{12} H_5 +{c}^{\prime }_{14} {H}^{\prime }_5 } )} \} ],\end{aligned}$$
(103a)
$$\begin{aligned} \Gamma _{22}&= \frac{1}{[ {{c}^{\prime }_{56} {H}^{\prime }_2 +{c}^{\prime }_{66} ( {\eta +H_2 } )+Q_{21} \{ {{c}^{\prime }_{56} {H}^{\prime }_1 +{c}^{\prime }_{66} ( {\xi +H_1 } )} \}} ]}\nonumber \\&\times [ {Q_{21} } \{ {{c}^{\prime }_{12} } {+( {\xi H_1 -\eta H_2 } ){c}^{\prime }_{22} } \}+( {\eta H_1 +\xi H_2 } ){c}^{\prime }_{22}\nonumber \\&+Q_{22} \{ {{c}^{\prime }_{12} } -{c}^{\prime }_{22} ( {\xi H_3 +\eta H_4 } ) \} +Q_{23} {c}^{\prime }_{22} ( {\eta H_3 -\xi H_4 } )\nonumber \\&+Q_{24} \{ {{c}^{\prime }_{12} } {-{c}^{\prime }_{22} \zeta H_6 } \} +Q_{25} {c}^{\prime }_{22} \zeta H_5 ],\end{aligned}$$
(103b)
$$\begin{aligned} \Gamma _{23}&= \frac{1}{[ {{c}^{\prime }_{56} {H}^{\prime }_2 +{c}^{\prime }_{66} ( {\eta +H_2 } )+Q_{21} \{ {{c}^{\prime }_{56} {H}^{\prime }_1 +{c}^{\prime }_{66} ( {\xi +H_1 } )} \}} ]}\nonumber \\&\times [ {Q_{21} } \{ {{c}^{\prime }_{13} } +{c}^{\prime }_{23} ( {\xi H_1 -\eta H_2 } ){+{c}^{\prime }_{34} ( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 } )} \}\nonumber \\&+\{ {{c}^{\prime }_{23} } ( {\eta H_1 +\xi H_2 } )+ {{c}^{\prime }_{34} ( {\eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 } )} \}\nonumber \\&+Q_{22} \{ {{c}^{\prime }_{13} } {-{c}^{\prime }_{23} ( {\xi H_3 +\eta H_4 } )-{c}^{\prime }_{34} ( {\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 } )} \}\nonumber \\&+Q_{23} \{ {{c}^{\prime }_{23} ( {\eta H_3 -\xi H_4 } )+{c}^{\prime }_{34} ( {\eta {H}^{\prime }_3 -\xi {H}^{\prime }_4 } )} \}\nonumber \\&+( {Q_{24} } \{ {{c}^{\prime }_{13} -} {\zeta ( {{c}^{\prime }_{23} H_6 +{c}^{\prime }_{34} {H}^{\prime }_6 } )} \}\nonumber \\&+Q_{25} \zeta \{ {{c}^{\prime }_{23} H_5 +{c}^{\prime }_{34} {H}^{\prime }_5 } \} ],\end{aligned}$$
(103c)
$$\begin{aligned} \Gamma _{24}&= \frac{1}{[ {{c}^{\prime }_{56} {H}^{\prime }_2 +{c}^{\prime }_{66} ( {\eta +H_2 } )+Q_{21} \{ {{c}^{\prime }_{56} {H}^{\prime }_1 +{c}^{\prime }_{66} ( {\xi +H_1 } )} \}} ]}\nonumber \\&\times [ {Q_{21} } \{ {{c}^{\prime }_{14} } + {{c}^{\prime }_{44} ( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 } )} \} +{c}^{\prime }_{44} ( {\eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 })\nonumber \\&+ {Q_{22} \{ {{c}^{\prime }_{14} } -{c}^{\prime }_{44} ( {\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 } )} \} +Q_{23} {c}^{\prime }_{44} ( {\eta {H}^{\prime }_3 -\xi {H}^{\prime }_4 } )\nonumber \\&+Q_{24} \{ {{c}^{\prime }_{14} {-{c}^{\prime }_{44} \zeta {H}^{\prime }_6 } \} +Q_{25} {c}^{\prime }_{44} \zeta {H}^{\prime }_5 } ],\end{aligned}$$
(103d)
$$\begin{aligned} \Gamma _{25}&= \frac{1}{[ {{c}^{\prime }_{56} {H}^{\prime }_2 +{c}^{\prime }_{66} ( {\eta +H_2 } )+Q_{21} \{ {{c}^{\prime }_{56} {H}^{\prime }_1 +{c}^{\prime }_{66} ( {\xi +H_1 } )} \}} ]}\nonumber \\&\times [ {Q_{21} } \{ {{c}^{\prime }_{55} } {H}^{\prime }_1 + {{c}^{\prime }_{56} ( {\xi +H_1 } )} \}+{c}^{\prime }_{55} {H}^{\prime }_2 +{c}^{\prime }_{56} ( {\eta +H_2 } )\nonumber \\&+Q_{22} \{ {{c}^{\prime }_{55} {H}^{\prime }_3 } \!-\! {{c}^{\prime }_{56} ( {\xi \!-\!H_3 } )} \} \!+\!Q_{23} \{ {{c}^{\prime }_{55} {H}^{\prime }_4 } \!+\!{c}^{\prime }_{56} ( {\eta \!+\!H_4 } ) \}\nonumber \\&+Q_{24} \{ {{c}^{\prime }_{55} {H}^{\prime }_5 } + {{c}^{\prime }_{56} H_5 } \} {+Q_{25} \{ {{c}^{\prime }_{55} {H}^{\prime }_6 +{c}^{\prime }_{56} ( {\zeta +H_6 } )} \}} ], \end{aligned}$$
(103e)
$$\begin{aligned}&\Gamma _{26} =1\nonumber \\&\quad +\frac{Q_{22} \{ {{c}^{\prime }_{56} {H}^{\prime }_3 - {{c}^{\prime }_{66} ( {\xi -H_3 } )} \} +Q_{23} \{ {{c}^{\prime }_{56} {H}^{\prime }_4 +{c}^{\prime }_{66} ( {\eta +H_4 } )} \}} }{{c}^{\prime }_{56} {H}^{\prime }_2 +{c}^{\prime }_{66} ( {\eta +H_2 } )+Q_{21} \{ {{c}^{\prime }_{56} {H}^{\prime }_1 +{c}^{\prime }_{66} ( {\xi +H_1 } )} \}}\nonumber \\&\quad +\frac{Q_{24} \{ {{c}^{\prime }_{56} {H}^{\prime }_5 + {{c}^{\prime }_{66} H_5 } \} +Q_{25} \{ {{c}^{\prime }_{56} {H}^{\prime }_6 +{c}^{\prime }_{66} ( {\zeta +H_6 } )} \}} }{{c}^{\prime }_{56} {H}^{\prime }_2 +{c}^{\prime }_{66} ( {\eta +H_2 } )+Q_{21} \{ {{c}^{\prime }_{56} {H}^{\prime }_1 +{c}^{\prime }_{66} ( {\xi +H_1 } )} \}}.\nonumber \\ \end{aligned}$$
(103f)
$$\begin{aligned} \Gamma _{31}&= \frac{1}{\sqrt{2\pi r} [ {Q_{35} \{ {{c}^{\prime }_{14} -{c}^{\prime }_{44} \zeta {H}^{\prime }_6 } \}+{c}^{\prime }_{44} \zeta {H}^{\prime }_5 } ]}\nonumber \\&\times [ {Q_{31} } \{ {{c}^{\prime }_{11} } +{c}^{\prime }_{12} ( {\xi H_1 -\eta H_2 } ) {+{c}^{\prime }_{14} ( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 } )} \}\nonumber \\&+Q_{32} \{ {{c}^{\prime }_{12} ( {\eta H_1 +\xi H_2 } )+{c}^{\prime }_{14} ( {\eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 } )} \}\nonumber \\&+Q_{33} \{ {{c}^{\prime }_{11} -{c}^{\prime }_{12} } ( {\xi H_3 +\eta H_4 } ) {-{c}^{\prime }_{14} ( {\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 } )} \}\nonumber \\&+Q_{34} \{ {{c}^{\prime }_{12} ( {\eta H_3 -\xi H_4 } )+{c}^{\prime }_{14} ( {\eta {H}^{\prime }_3 -\xi {H}^{\prime }_4 } )} \}\nonumber \\&+Q_{35} \{ {{c}^{\prime }_{11} } -{c}^{\prime }_{12} \zeta H_6 {-{c}^{\prime }_{14} \zeta {H}^{\prime }_6 } \}\nonumber \\&+ \{ {{c}^{\prime }_{12} \zeta H_5 +{c}^{\prime }_{14} \zeta {H}^{\prime }_5 } \} ],\end{aligned}$$
(104a)
$$\begin{aligned} \Gamma _{32}&= \frac{1}{ [ {Q_{35} \{ {{c}^{\prime }_{14} -{c}^{\prime }_{44} \zeta {H}^{\prime }_6 } \}+{c}^{\prime }_{44} \zeta {H}^{\prime }_5 } ]}\nonumber \\&\times [ {Q_{31} } \{{c}^{\prime }_{12} {+{c}^{\prime }_{22} ( {\xi H_1 -\eta H_2 } )} \}\nonumber \\&+Q_{32} {c}^{\prime }_{22} ( {\eta H_1 +\xi H_2 } ) \nonumber \\&+Q_{33} \{ {{c}^{\prime }_{12} } {-{c}^{\prime }_{22} ( {\xi H_3 +\eta H_4 } )} \}\nonumber \\&+Q_{34} {c}^{\prime }_{22} ( {\eta H_3 -\xi H_4 } )\nonumber \\&+Q_{35} \{ {{c}^{\prime }_{12} } { {-{c}^{\prime }_{22} \zeta H_6 } \} +{c}^{\prime }_{22} \zeta H_5 } ],\end{aligned}$$
(104b)
$$\begin{aligned} \Gamma _{33}&= \frac{1}{ [ {Q_{35} \{ {{c}^{\prime }_{14} -{c}^{\prime }_{44} \zeta {H}^{\prime }_6 } \}+{c}^{\prime }_{44} \zeta {H}^{\prime }_5 } ]}\nonumber \\&\times [ {Q_{31} } \{ {{c}^{\prime }_{13} +{c}^{\prime }_{23} { ( {\xi H_1 -\eta H_2 } )+{c}^{\prime }_{34} ( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 } )} \} } \nonumber \\&+Q_{32} \{ {{c}^{\prime }_{23} } ( {\eta H_1 +\xi H_2 } )+{c}^{\prime }_{34} { ( {\eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 } )} \} \nonumber \\&+Q_{33} \{ {{c}^{\prime }_{13} } -{c}^{\prime }_{23} ( {\xi H_3 +\eta H_4 } )-{c}^{\prime }_{34} ( {\xi {H}^{\prime }_3 +\eta {H}^{\prime }_4 } ) \}\nonumber \\&+Q_{34} \{ {{c}^{\prime }_{23} ( {\eta H_3 -\xi H_4 } )+{c}^{\prime }_{34} ( {\eta {H}^{\prime }_3 -\xi {H}^{\prime }_4 } )} \}\nonumber \\&+Q_{35} \{ {{c}^{\prime }_{13} -{c}^{\prime }_{23} \zeta H_6 } { {-{c}^{\prime }_{34} \zeta {H}^{\prime }_6 } \} +\zeta \{ {{c}^{\prime }_{23} H_5 +{c}^{\prime }_{34} {H}^{\prime }_5 } \}} ],\end{aligned}$$
(104c)
$$\begin{aligned} \Gamma _{34}&= \frac{Q_{31} \{ {{c}^{\prime }_{14} +{c}^{\prime }_{44} ( {\xi {H}^{\prime }_1 -\eta {H}^{\prime }_2 } )} \}+Q_{32} {c}^{\prime }_{44} ( {\eta {H}^{\prime }_1 +\xi {H}^{\prime }_2 } )}{Q_{35} \{ {{c}^{\prime }_{14} -{c}^{\prime }_{44} \zeta {H}^{\prime }_6 } \}+{c}^{\prime }_{44} \zeta {H}^{\prime }_5 }\nonumber \\&+\frac{Q_{33} \{ {{c}^{\prime }_{14} \!-\!{c}^{\prime }_{44} ( {\xi {H}^{\prime }_3 \!+\!\eta {H}^{\prime }_4 } )} \}\!+\!Q_{34} {c}^{\prime }_{44} ( {\eta {H}^{\prime }_3 \!-\!\xi {H}^{\prime }_4 } )}{Q_{35} \{ {{c}^{\prime }_{14} \!-\!{c}^{\prime }_{44} \zeta {H}^{\prime }_6 } \}\!+\!{c}^{\prime }_{44} \zeta {H}^{\prime }_5 }\!+\!1.\end{aligned}$$
(104d)
$$\begin{aligned} \Gamma _{35}&= \frac{1}{ [ {Q_{35} \{ {{c}^{\prime }_{14} -{c}^{\prime }_{44} \zeta {H}^{\prime }_6 } \}+{c}^{\prime }_{44} \zeta {H}^{\prime }_5 } ]}\nonumber \\&\times [ {Q_{31} \{ {{c}^{\prime }_{55} {H}^{\prime }_1 +{c}^{\prime }_{56} ( {\xi +H_1 } )} \}} \nonumber \\&+Q_{32} \{ {{c}^{\prime }_{55} {H}^{\prime }_2 } +{c}^{\prime }_{56} { ( {\eta +H_2 } )} \}\nonumber \\&+Q_{33} \{ {{c}^{\prime }_{55} } {H}^{\prime }_3 - {{c}^{\prime }_{56} ( {\xi -H_3 } )} \}\nonumber \\&+Q_{34} \{ {{c}^{\prime }_{55} } {H}^{\prime }_4 +{c}^{\prime }_{56} { ( {\eta +H_4 } )} \}\nonumber \\&+Q_{35} \{ {{c}^{\prime }_{55} {H}^{\prime }_5 } + {{c}^{\prime }_{56} H_5 } \}\nonumber \\&+ \{ {{c}^{\prime }_{55} {H}^{\prime }_6 +{c}^{\prime }_{56} ( {\eta +H_6 } )} \} ],\end{aligned}$$
(104e)
$$\begin{aligned} \Gamma _{36}&= \frac{1}{\sqrt{2\pi r} [ {Q_{35} \{ {{c}^{\prime }_{14} -{c}^{\prime }_{44} \zeta {H}^{\prime }_6 } \}+{c}^{\prime }_{44} \zeta {H}^{\prime }_5 } ]}\nonumber \\&\times [ {Q_{31} } \{ {{c}^{\prime }_{56} {H}^{\prime }_1 {+{c}^{\prime }_{66} ( {\xi +H_1 } )} \} } \nonumber \\&+Q_{32} \{ {{c}^{\prime }_{56} {H}^{\prime }_2 +{c}^{\prime }_{66} ( {\eta +H_2 } )} \}\nonumber \\&+Q_{33} \{ {{c}^{\prime }_{56} } {H}^{\prime }_3 - {{c}^{\prime }_{66} ( {\xi -H_3 } )} \}\nonumber \\&+Q_{34} \{ {{c}^{\prime }_{56} {H}^{\prime }_4 +{c}^{\prime }_{66} ( {\eta +H_4 } )} \}\nonumber \\&+Q_{35} \{ {{c}^{\prime }_{56} } {H}^{\prime }_5 + {{c}^{\prime }_{66} H_5 } \}\nonumber \\&+ \{ {{c}^{\prime }_{56} {H}^{\prime }_6 +{c}^{\prime }_{66} ( {\zeta +H_6 } )} \} ]. \end{aligned}$$
(104f)

Appendix E: Transformation of stress components

Transformation of stress components from \(x = [1\bar{{1}}0], y = [111], z = [\bar{{1}}\bar{{1}}2]\) to \({x}^{\prime }= [1\bar{{1}}0], {y}^{\prime } = [11\bar{{1}}], {z}^{\prime } = [112]\), referred to earlier in Sect. 7, can be written as follows:

$$\begin{aligned} \left\{ {{\begin{array}{c} {{\sigma }^{\prime }_x } \\ {{\sigma }^{\prime }_y } \\ {{\sigma }^{\prime }_z } \\ {{\tau }^{\prime }_{yz} } \\ {{\tau }^{\prime }_{xz} } \\ {{\tau }^{\prime }_{xy} } \\ \end{array} }} \right\} =\left[ {{\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 1&{} 0&{} 0&{} 0&{} 0&{} 0 \\ 0&{} {\cos ^{2}\left( \alpha \right) }&{} {\sin ^{2}\left( \alpha \right) }&{} {\sin \left( {2\alpha } \right) }&{} 0&{} 0 \\ 0&{} {\sin ^{2}\left( \alpha \right) }&{} {\cos ^{2}\left( \alpha \right) }&{} {-\sin \left( {2\alpha } \right) }&{} 0&{} 0 \\ 0&{} {-\frac{1}{2}\sin \left( {2\alpha } \right) }&{} {\frac{1}{2}\sin \left( {2\alpha } \right) }&{} {\cos \left( {2\alpha } \right) }&{} 0&{} 0\\ 0&{} 0&{} 0&{} 0&{} {\cos \left( \alpha \right) }&{} {-\sin \left( \alpha \right) } \\ 0&{} 0&{} 0&{} 0&{} {\sin \left( \alpha \right) }&{} {\cos \left( \alpha \right) } \\ \end{array} }} \right] \left\{ {{\begin{array}{c} {\sigma _x } \\ {\sigma _y } \\ {\sigma _z } \\ {\tau _{yz} } \\ {\tau _{xz} } \\ {\tau _{xy} } \\ \end{array} }} \right\} . \end{aligned}$$
(105)

Next, transformation of stress components from \({x}^{\prime }= [1\bar{{1}}0], {y}^{\prime } = [11\bar{{1}}], {z}^{\prime } = [112]\) to \({x}^{\prime \prime } = [\bar{{1}}\bar{{1}}0], {y}^{\prime \prime } = [\bar{{1}}11], {z}^{\prime \prime } = [\bar{{1}}1\bar{{2}}]\), referred to in Sect. 7, can be written as follows:

$$\begin{aligned} \left\{ {{\begin{array}{c} {{\sigma }^{\prime \prime }_x } \\ {{\sigma }^{\prime \prime }_y } \\ {{\sigma }^{\prime \prime }_z } \\ {{\tau }^{\prime \prime }_{yz} } \\ {{\tau }^{\prime \prime }_{xz} } \\ {{\tau }^{\prime \prime }_{xy} } \\ \end{array} }} \right\} =\left[ {{\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} {a_{11}^2 }&{} {a_{12}^2 }&{} {a_{13}^2 }&{} {2a_{12} a_{13} }&{} {2a_{11} a_{13} }&{} {2a_{11} a_{12} } \\ {a_{21}^2 }&{} {a_{22}^2 }&{} {a_{23}^2 }&{} {2a_{22} a_{23} }&{} {2a_{21} a_{23} }&{} {2a_{21} a_{22} } \\ {a_{31}^2 }&{} {a_{32}^2 }&{} {a_{33}^2 }&{} {2a_{32} a_{33} }&{} {2a_{31} a_{33} }&{} {2a_{31} a_{32} } \\ {a_{21} a_{31} }&{} {a_{22} a_{32} }&{} {a_{23} a_{33} }&{} {a_{22} a_{33} +a_{23} a_{32} }&{} {a_{21} a_{33} +a_{23} a_{31} }&{} {a_{21} a_{32} +a_{22} a_{31} } \\ {a_{11} a_{31} }&{} {a_{12} a_{32} }&{} {a_{13} a_{33} }&{} {a_{12} a_{33} +a_{13} a_{32} }&{} {a_{11} a_{33} +a_{13} a_{31} }&{} {a_{11} a_{32} +a_{12} a_{31} } \\ {a_{11} a_{21} }&{} {a_{12} a_{22} }&{} {a_{13} a_{23} }&{} {a_{12} a_{23} +a_{13} a_{22} }&{} {a_{11} a_{23} +a_{13} a_{21} }&{} {a_{11} a_{22} +a_{12} a_{21} } \\ \end{array} }} \right] \left\{ {{\begin{array}{c} {{\sigma }^{\prime }_x } \\ {{\sigma }^{\prime }_y } \\ {{\sigma }^{\prime }_z } \\ {{\tau }^{\prime }_{yz} } \\ {{\tau }^{\prime }_{xz} } \\ {{\tau }^{\prime }_{xy} } \\ \end{array} }} \right\} , \end{aligned}$$
(106)

in which

$$\begin{aligned} \begin{aligned}&a_{11} =\frac{1}{2}\left[ {\bar{{1}}\bar{{1}}0} \right] .\left[ {1\bar{{1}}0} \right] =0, \quad a_{12} =\frac{1}{\sqrt{6}}\left[ {\bar{{1}}\bar{{1}}0} \right] .\left[ {11\bar{{1}}} \right] =-\frac{\sqrt{2}}{\sqrt{3}},\quad a_{13} =\frac{1}{2\sqrt{3}}\left[ {\bar{{1}}\bar{{1}}0} \right] .\left[ {112} \right] =-\frac{1}{\sqrt{3}},\\&a_{21} =\frac{1}{\sqrt{6}}\left[ {\bar{{1}}11} \right] .\left[ {1\bar{{1}}0} \right] =-\frac{2}{\sqrt{6}},\quad a_{22} =\frac{1}{3}\left[ {\bar{{1}}11} \right] .\left[ {11\bar{{1}}} \right] =-\frac{1}{3},\quad a_{23} =\frac{1}{3\sqrt{2}}\left[ {\bar{{1}}11} \right] .\left[ {112} \right] =\frac{\sqrt{2}}{3},\\&a_{31} =\frac{1}{2\sqrt{3}}\left[ {\bar{{1}}1\bar{{2}}} \right] .\left[ {1\bar{{1}}0} \right] =-\frac{1}{\sqrt{3}},\quad a_{32} =\frac{1}{3\sqrt{2}}\left[ {\bar{{1}}1\bar{{2}}} \right] .\left[ {11\bar{{1}}} \right] =\frac{\sqrt{2}}{3},\quad a_{33} =\frac{1}{6}\left[ {\bar{{1}}1\bar{{2}}} \right] .\left[ {112} \right] =-\frac{2}{3}. \end{aligned} \end{aligned}$$
(107)

Finally, transformation of stress components from \({x}^{\prime \prime } = [\bar{{1}}\bar{{1}}0], {y}^{\prime \prime } = [\bar{{1}}11], {z}^{\prime \prime } = [\bar{{1}}1\bar{{2}}]\) back to \(x = [1\bar{{1}}0], y = [111], z = [\bar{{1}}\bar{{1}}2]\), referred to in Sect. 7, can be written as follows:

$$\begin{aligned}&\left\{ {{\begin{array}{c} {\sigma _x } \\ {\sigma _y } \\ {\sigma _z } \\ {\tau _{yz} } \\ {\tau _{xz} } \\ {\tau _{xy} } \\ \end{array} }} \right\} =\left[ {{\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} {{{a}^{\prime 2}_{11}}}&{} {{{a}^{\prime 2}_{12}}}&{} {{{a}^{\prime 2}_{13}} }&{} {2{a}^{\prime }_{12} {a}^{\prime }_{13} }&{} {2{a}^{\prime }_{11} {a}^{\prime }_{13} }&{} {2{a}^{\prime }_{11} {a}^{\prime }_{12} } \\ {{{a}^{\prime 2}_{21}} }&{} {{{a}^{\prime 2}_{22}} }&{} {{{a}^{\prime 2}_{23}} }&{} {2{a}^{\prime }_{22} {a}^{\prime }_{23} }&{} {2{a}^{\prime }_{21} {a}^{\prime }_{23} }&{} {2{a}^{\prime }_{21} {a}^{\prime }_{22} } \\ {{{a}^{\prime 2}_{31}} }&{} {{{a}^{\prime 2}_{32}} }&{} {{{a}^{\prime 2}_{33}} }&{} {2{a}^{\prime }_{32} {a}^{\prime }_{33} }&{} {2{a}^{\prime }_{31} {a}^{\prime }_{33} }&{} {2{a}^{\prime }_{31} {a}^{\prime }_{32} } \\ {{a}^{\prime }_{21} {a}^{\prime }_{31} }&{} {{a}^{\prime }_{22} {a}^{\prime }_{32} }&{} {{a}^{\prime }_{23} {a}^{\prime }_{33} }&{} {{a}^{\prime }_{22} {a}^{\prime }_{33} +{a}^{\prime }_{23} {a}^{\prime }_{32} }&{} {{a}^{\prime }_{21} {a}^{\prime }_{33} +{a}^{\prime }_{23} {a}^{\prime }_{31} }&{} {{a}^{\prime }_{21} {a}^{\prime }_{32} +{a}^{\prime }_{22} {a}^{\prime }_{31} } \\ {{a}^{\prime }_{11} {a}^{\prime }_{31} }&{} {{a}^{\prime }_{12} {a}^{\prime }_{32} }&{} {{a}^{\prime }_{13} {a}^{\prime }_{33} }&{} {{a}^{\prime }_{12} {a}^{\prime }_{33} +{a}^{\prime }_{13} {a}^{\prime }_{32} }&{} {{a}^{\prime }_{11} {a}^{\prime }_{33} +{a}^{\prime }_{13} {a}^{\prime }_{31} }&{} {{a}^{\prime }_{11} {a}^{\prime }_{32} +{a}^{\prime }_{12} {a}^{\prime }_{31} } \\ {{a}^{\prime }_{11} {a}^{\prime }_{21} }&{} {{a}^{\prime }_{12} {a}^{\prime }_{22} }&{} {{a}^{\prime }_{13} {a}^{\prime }_{23} }&{} {{a}^{\prime }_{12} {a}^{\prime }_{23} +{a}^{\prime }_{13} {a}^{\prime }_{22} }&{} {{a}^{\prime }_{11} {a}^{\prime }_{23} +{a}^{\prime }_{13} {a}^{\prime }_{21} }&{} {{a}^{\prime }_{11} {a}^{\prime }_{22} +{a}^{\prime }_{12} {a}^{\prime }_{21} } \\ \end{array} }} \right] \left\{ {{\begin{array}{c} {{\sigma }^{\prime \prime }_x } \\ {{\sigma }^{\prime \prime }_y } \\ {{\sigma }^{\prime \prime }_z } \\ {{\tau }^{\prime \prime }_{yz} } \\ {{\tau }^{\prime \prime }_{xz} } \\ {{\tau }^{\prime \prime }_{xy} } \\ \end{array} }} \right\} ,&\end{aligned}$$
(108)

in which

$$\begin{aligned}&{a}^{\prime }_{11} =\frac{1}{2}\left[ {\bar{{1}}\bar{{1}}0} \right] .\left[ {\bar{{1}}\bar{{1}}0} \right] =0,\nonumber \nonumber \\&{a}^{\prime }_{12} =\frac{1}{\sqrt{6}}\left[ {1\bar{{1}}0} \right] .\left[ {\bar{{1}}11} \right] =-\frac{\sqrt{2}}{\sqrt{3}},\nonumber \\&{a}^{\prime }_{13} =\frac{1}{2\sqrt{3}}\left[ {1\bar{{1}}0} \right] .\left[ {\bar{{1}}1\bar{{2}}} \right] =-\frac{1}{\sqrt{3}},\nonumber \\&{a}^{\prime }_{21} =\frac{1}{\sqrt{6}}\left[ {111} \right] .\left[ {\bar{{1}}\bar{{1}}0} \right] =-\frac{\sqrt{2}}{\sqrt{3}},\nonumber \\&{a}^{\prime }_{22} =\frac{1}{3}\left[ {111} \right] .\left[ {\bar{{1}}11} \right] =\frac{1}{3},\nonumber \\&{a}^{\prime }_{23} =\frac{1}{3\sqrt{2}}\left[ {111} \right] .\left[ {\bar{{1}}1\bar{{2}}} \right] =-\frac{\sqrt{2}}{3},\nonumber \\&{a}^{\prime }_{31} =\frac{1}{2\sqrt{3}}\left[ {\bar{{1}}\bar{{1}}2} \right] .\left[ {\bar{{1}}\bar{{1}}0} \right] =\frac{1}{\sqrt{3}},\nonumber \\&{a}^{\prime }_{32} =\frac{1}{3\sqrt{2}}\left[ {\bar{{1}}\bar{{1}}2} \right] .\left[ {\bar{{1}}11} \right] =\frac{\sqrt{2}}{3},\nonumber \\&{a}^{\prime }_{33} =\frac{1}{6}\left[ {\bar{{1}}\bar{{1}}2} \right] .\left[ {\bar{{1}}1\bar{{2}}} \right] =-\frac{2}{3}. \end{aligned}$$
(109)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhuri, R.A. Three-dimensional mixed mode I+II+III singular stress field at the front of a \({\varvec{(}}\mathbf{111 }{\varvec{)}[}\bar{\mathbf{1 }}\bar{\mathbf{1 }}\mathbf 2 {\varvec{]}\times [}\mathbf 1 \bar{\mathbf{1 }}\mathbf 0 {\varvec{]}}\) crack weakening a diamond cubic mono-crystalline plate with crack turning and step/ridge formation. Int J Fract 187, 15–49 (2014). https://doi.org/10.1007/s10704-013-9891-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-013-9891-7

Keywords

Navigation