Skip to main content
Log in

Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

We present a phase-field model to simulate intergranular and transgranular crack propagation in ferroelectric polycrystals. The proposed model couples three phase-fields describing (1) the polycrystalline structure, (2) the location of the cracks, and (3) the ferroelectric domain microstructure. Different polycrystalline microstructures are obtained from computer simulations of grain growth. Then, a phase-field model for fracture in ferroelectric single-crystals is extended to polycrystals by incorporating the differential fracture toughness of the bulk and the grain boundaries, and the different crystal orientations of the grains. Our simulation results show intergranular crack propagation in fine-grain microstructures, while transgranular crack propagation is observed in coarse grains. Crack deflection is shown as the main toughening mechanism in the fine-grain structure. Due to the ferroelectric domain switching mechanism, noticeable fracture toughness enhancement is also obtained for transgranular crack propagation. These observations agree with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdollahi A, Arias I (2011a) Modeling and numerical simulation of crack propagation in piezoelectric and ferroelectric materials considering different crack face conditions (submitted for publication)

  • Abdollahi A, Arias I (2011b) Phase-field modeling of the coupled microstructure and fracture evolution in ferroelectric single crystals. Acta Mater 59: 4733–4746

    Article  CAS  Google Scholar 

  • Abdollahi A, Arias I (2011) Phase-field simulation of anisotropic crack propagation in ferroelectric single crystals: effect of microstructure on the fracture process. Model Simul Mater Sci Eng 19: 074010

    Article  Google Scholar 

  • Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57: 1209–1229

    Article  Google Scholar 

  • Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91: 5–148

    Article  Google Scholar 

  • Dadvand P, Rossi R, Onate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17: 253–297

    Article  Google Scholar 

  • DeSimone A, Kohn RV, Müller S, Otto F, Schäfer R (2001) Two-dimensional modeling of soft ferromagnetic films. Proc R Soc Lond A 457: 2983–2991

    Article  Google Scholar 

  • Devonshire AF (1949) Theory of barium titanate. 1. Philos Mag 40: 1040–1063

    CAS  Google Scholar 

  • Devonshire AF (1951) Theory of barium titanate. 2. Philos Mag 42: 1065–1079

    CAS  Google Scholar 

  • Faber KT, Evans AG (1983) Intergranular crack-deflection toughening in silicon-carbide. J Am Ceram Soc 66: C94–C96

    Article  CAS  Google Scholar 

  • Fan D, Chen LQ (1997) Computer simulation of grain growth using a continuum field model. Acta Mater 45: 611–622

    Article  CAS  Google Scholar 

  • Fang DN, Jiang YJ, Li S, Sun CT (2007) Interactions between domain switching and crack propagation in poled BaTiO3 single crystal under mechanical loading. Acta Mater 55: 5758–5767

    Article  CAS  Google Scholar 

  • Floquet N, Valot CM, Mesnier MT, Niepce JC, Normand L, Thorel A, Kilaas R (1997) Ferroelectric domain walls in BaTiO3: fingerprints in XRPD diagrams and quantitative HRTEM image analysis. J Phys III 7: 1105–1128

    CAS  Google Scholar 

  • Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46: 1319–1342

    Article  Google Scholar 

  • Grah M, Alzebdeh K, Sheng PY, Vaudin MD, Bowman KJ, Ostoja-Starzewski M (1996) Brittle-intergranular failure in 2D microstructures: experiments and computer simulations. Acta Mater 44: 4003–4018

    Article  CAS  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans Royal Soc Lond A 221: 163–198

    Article  Google Scholar 

  • Hackemann S, Pfeiffer W (2003) Domain switching in process zones of PZT: characterization by microdiffraction and fracture mechanical methods. J Eur Ceram Soc 23: 141–151

    Article  CAS  Google Scholar 

  • Huber JE (2005) Micromechanical modelling of ferroelectrics. Curr Opin Solid State Mater Sci 9: 100–106

    Article  CAS  Google Scholar 

  • Jones JL, Motahari SM, VarlioglU M, Lienert U, Bernier JV, Hoffman M, Uestuendag E (2007) Crack tip process zone domain switching in a soft lead zirconate titanate ceramic. Acta Mater 55: 5538–5548

    Article  CAS  Google Scholar 

  • Kamlah M (2001) Ferroelectric and ferroelastic piezoceramics—modeling of electromechanical hysteresis phenomena. Cont Mech Therm 13: 219–268

    Article  CAS  Google Scholar 

  • Kim SB, Kim DY, Kim JJ, Cho SH (1990) Effect of grain-size and poling on the fracture mode of lead zirconate titanate ceramics. J Am Ceram Soc 73: 161–163

    Article  CAS  Google Scholar 

  • Kueck AM, Kim DK, Ramasse QM, De Jonghe LC, Ritchie RO (2008) Atomic-resolution imaging of the nanoscale origin of toughness in rare-earth doped SiC. Nano Lett 8: 2935–2939

    Article  CAS  Google Scholar 

  • Kuna M (2010) Fracture mechanics of piezoelectric materials—where are we right now?. Eng Fract Mech 77: 309–326

    Article  Google Scholar 

  • Landis CM (2003) On the fracture toughness of ferroelastic materials. J Mech Phys Solids 51(8): 1347–1369

    Article  Google Scholar 

  • Li Q, Kuna M (2011) Evaluation of electromechanical fracture behavior by configurational forces in cracked ferroelectric polycrystals. Comput Mater Sci. doi:10.1016/j.commatsci.2011.01.050

  • Li W, Landis CM (2011) Nucleation and growth of domains near crack tips in single crystal ferroelectrics. Eng Fract Mech. doi:10.1016/j.engfracmech.2011.01.002

  • Meschke F, Kolleck A, Schneider GA (1997) R-curve behaviour of BaTiO3 due to stress-induced ferroelastic domain switching. J Eur Ceram Soc 17: 1143–1149

    Article  CAS  Google Scholar 

  • Meschke F, Raddatz O, Kolleck A, Schneider GA (2000) R-curve behavior and crack-closure stresses in barium titanate and (Mg, Y)-PSZ ceramics. J Am Ceram Soc 83: 353–361

    Article  CAS  Google Scholar 

  • Schneider GA (2007) Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Annu Rev Mater Res 37: 491–538

    Article  CAS  Google Scholar 

  • Sheng JS, Landis CM (2007) Toughening due to domain switching in single crystal ferroelectric materials. Int J Fract 143: 161–175

    Article  Google Scholar 

  • Shu YC, Bhattacharya K (2001) Domain patterns and macroscopic behaviour of ferroelectric materials. Phil Mag B 81: 2021–2054

    CAS  Google Scholar 

  • Song YC, Soh AK, Ni Y (2007) Phase field simulation of crack tip domain switching in ferroelectrics. J Phys D Appl Phys 40: 1175–1182

    Article  CAS  Google Scholar 

  • Stemmer S, Streiffer SK, Ernst F, Ruhle M (1995) Atomistic structure of 90-degrees domain-walls in ferroelectric PbTiO3 thin-films. Phil Mag A 71: 713–724

    Article  CAS  Google Scholar 

  • Sukumar N, Srolovitz DJ, Baker TJ, Prevost JH (2003) Brittle fracture in polycrystalline microstructures with the extended finite element method. Int J Numer Methods Eng 56: 2015–2037

    Article  Google Scholar 

  • Tan XL, Shang JK (2002) In-situ transmission electron microscopy study of electric-field-induced grain-boundary cracking in lead zirconate titanate. Phil Mag A 82: 1463–1478

    Article  CAS  Google Scholar 

  • Verhoosel CV, Gutierrez MA (2009) Modelling inter- and transgranular fracture in piezoelectric polycrystals. Eng Fract Mech 76: 742–760

    Article  Google Scholar 

  • Wang J, Landis CM (2006) Effects of in-plane electric fields on the toughening behavior of ferroelectric ceramics. J Mech Mater Struct 1: 1075–1095

    Article  Google Scholar 

  • Wang J, Zhang TY (2007) Phase field simulations of polarization switching-induced toughening in ferroelectric ceramics. Acta Mater 55: 2465–2477

    Article  CAS  Google Scholar 

  • Wang J, Zhang TY (2008) Phase field simulations of a permeable crack parallel to the original polarization direction in a ferroelectric mono-domain. Eng Fract Mech 75(17): 4886–4897. doi:10.1016/j.engfracmech.2008.06.025

    Article  Google Scholar 

  • Wang YL, Tagantsev AK, Damjanovic D, Setter N, Yarmarkin VK, Sokolov AI, Lukyanchuk IA (2007) Landau thermodynamic potential for BaTiO3. J Appl Phys 101(1–9):104,115

    Google Scholar 

  • Xu BX, Schrade D, Gross D, Mueller R (2010) Fracture simulation of ferroelectrics based on the phase field continuum and a damage variable. Int J Fract 166: 163–172

    Article  Google Scholar 

  • Yang L, Dayal K (2011) Microstructure and stray electric fields at surface cracks in ferroelectrics. Int J Fract. doi:10.1007/s10704-011-9670-2

  • Yang W, Zhu T (1998) Switch-toughening of ferroelectrics subjected to electric fields. J Mech Phys Solids 46: 291–311

    Article  Google Scholar 

  • Zhang TY, Gao CF (2004) Fracture behaviors of piezoelectric materials. Theor Appl Fract Mech 41: 339–379

    Article  CAS  Google Scholar 

  • Zhang W, Bhattacharya K (2005a) A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta Mater 53: 185–198

    Article  CAS  Google Scholar 

  • Zhang W, Bhattacharya K (2005b) A computational model of ferroelectric domains. Part II: grain boundaries and defect pinning. Acta Mater 53: 199–209

    Article  CAS  Google Scholar 

  • Zhu T, Yang W (1997) Toughness variation of ferroelectrics by polarization switch under non-uniform electric field. Acta Mater 45: 4695–4702

    Article  CAS  Google Scholar 

  • Zhu T, Yang W (1999) Fatigue crack growth in ferroelectrics driven by cyclic electric loading. J Mech Phys Solids 47: 81–97

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Arias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdollahi, A., Arias, I. Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals. Int J Fract 174, 3–15 (2012). https://doi.org/10.1007/s10704-011-9664-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-011-9664-0

Keywords

Navigation