Skip to main content
Log in

3D shear-mode fatigue crack growth in maraging steel and Ti-6Al-4V

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Fatigue crack growth tests in mixed-mode II + III were performed on maraging steel and Ti-6Al-4V. The 3D evolutions of the crack fronts -measured by SEM after interrupted tests- were analyzed, taking into account the reduction in effective crack driving force by the interlocking and friction of the asperities of the crack surface. Under small-scale yielding conditions, the mixed-mode crack growth rates were found to correlate best with \({\sqrt{{\Delta {\rm K}}_{\rm II}^{{\rm eff}^{2}}+1.2\Delta {\rm K}_{\rm III}^{{\rm eff}^{2}}}}\) in maraging steel, while for Ti-6Al-4V, \({\sqrt{\Delta {\rm K}_{\rm II}^{{\rm eff}^{2}}+0.9\Delta {\rm K}_{\rm III}^{{\rm eff}^{2}}}}\) appeared suitable. For extended plasticity, a crack growth prediction method is proposed and validated for Ti-6Al-4V. This method is based on elastic-plastic F.E. computations and application, ahead of each node of the crack front, of a shear-dominated fatigue criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α :

angle between the precrack front and a horizontal axis

\({\Delta {\rm K}_{\rm II}^{\rm nominal}, \Delta{\rm K}_{\rm III}^{\rm nominal}}\) :

Amplitude of Mode II or Mode III stress intensity factor computed for a frictionless crack

\({\Delta {\rm K}_{\rm II}^{\rm effective}, \Delta{\rm K}_{\rm III}^{\rm effective}}\) :

Amplitude of Mode II or Mode III stress intensity factor after friction correction

E, ν :

Young’s modulus, Poisson’s ratio

G:

energy release rate

Δγ :

shear strain range along the critical plane, in Fatemi and Socie’s fatigue criterion

σ n, max :

peak opening stress along the critical plane, in Fatemi and Socie’s fatigue criterion

σ y :

yield stress

k:

a material-dependent constant in Fatemi and Socie’s fatigue criterion

βFS :

fatigue damage parameter, in Fatemi and Socie’s fatigue criterion

l :

length of the segment ahead of a point along the crack front over which the fatigue damage parameter βFS, is averaged before the computation of its fatigue life: Nfracture

References

  • Bazant ZP, Estenssoro LF (1979) Surface singularity and crack propagation. Int J Solids 15: 405–426

    Article  MATH  MathSciNet  Google Scholar 

  • Beretta S, Donzella G, Roberti R, Ghidini A (2000) Contact fatigue propagation of deep defects in rail wheels. In: Proceedings of 13th European Conference Fract. ECF13, San Sebastian, Spain vol 3R, pp 147

  • Bertolino G, Doquet V (2009) Derivation of effective ΔKII and asperity-induced KI from the measured crack faces displacements. Eng Fract Mech 76: 1574–1588

    Article  Google Scholar 

  • Brown MW, Hay E, Miller KJ (1985) Fatigue at notches subjected to reversed torsion and static axial loads. Fatigue Fract Eng M 8: 243

    Article  Google Scholar 

  • Brown MW, Hay E, Miller KJ (1985) Fatigue at notches subjected to reversed torsion and static axial loads. Fat Fract Eng Mat Struct 8: 243

    Article  Google Scholar 

  • Brown MW, Miller KJ, Fernando US, Yates JR, Suker DK (1994) Aspects of multiaxial fatigue crack propagation. In: Proceedings of 4th International Conference Biaxial/Multiaxial fatigue, Paris, vol 1, pp 3–16

  • Doquet V, Bertolino G (2008) A material and environment-dependent criterion for the prediction of fatigue crack paths in metals. Eng Fract Mech 75: 3399–3412

    Article  Google Scholar 

  • Doquet V, Bertolino G (2008) Local approach to fatigue cracks bifurcation. Int J Fatigue 30: 942–950

    Article  Google Scholar 

  • Doquet V, Abbadi M, Bui QH, Pons A (2009) Influence of the loading path on fatigue crack growth under mixed-mode loading. Int J of Fract 59: 219–232

    Article  CAS  Google Scholar 

  • Fatemi A, Socie DF (1988) A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mat 14: 149–165

    Article  Google Scholar 

  • Hellier AK, Corderoy DJH, McGirr MB (1987) A practical mixed mode II/III fatigue test rig. Int J Fatigue 9: 95–101

    Article  Google Scholar 

  • Hellier AK, McGirr MB, Corderoy DJH (1991) A finite element and fatigue threshold study of shelling in heavy haul rails. Wear 144: 289–306

    Article  Google Scholar 

  • Hellier AK, Mc Girr MB, Corderoy DJH, Kutajczyk LA (1990) Fatigue of head-hardened rail steel under mode III loading. Int J Fract 42: R19–23

    Article  CAS  Google Scholar 

  • Heyder M, Kolk K, Kuhn G (2005) Numerical and experimental investigations of the influence of corner singularities on 3D fatigue crack propagation. Eng Fract Mech 72: 2095–2105

    Article  Google Scholar 

  • Heyder M, Kuhn G (2006) 3D fatigue crack propagation: experimental studies. Int J Fatigue 28: 627–634

    Article  MATH  CAS  Google Scholar 

  • Holáň L, Pippan R, Pokluda J, Horníková J, Hohenwarter A, Slámečka K (2009) Near-threshold propagation of Mode II and Mode III Cracks. International Conference on Crack Paths, Vicenza, Italy, pp 25–29

  • Hourlier F, d’Hondt H, Truchon M Pineau (1985) Fatigue crack path behavior under polymodal fatigue. In: Miller KJ, Brown M (eds) Multiaxial fatigue. ASTM STP 853, ASTM Philadelphia, USA, pp 228–248

    Chapter  Google Scholar 

  • McClintock FA, Ritchie RO (1982) In: Mura T (ed) Mechanics of Fatigue. American Society of Mechanical Engineers, AMD, vol 47, pp 1–11

  • Meade KP, Keer LM (1984) Stress intensity factors for a semi-infinite plane crack with a wavy front. J Elasticity 14: 79–92

    Article  MATH  MathSciNet  Google Scholar 

  • Murakami Y, Natsume H (2002) Stress singularity at the corner point of 3-D surface crack under mode II loading. JSME Int J 45: 61–169

    Article  Google Scholar 

  • Murakami Y, Kusumoto R, Takahashi K (2002) Growth mechanism and threshold of mode II and mode III fatigue crack. In: Proceedings of 14th European Conference on fracture, ECF14, Cracow, Poland. vol 2, pp 493–500

  • Murakami Y, Takahashi K, Kusumoto R (2003) Threshold and growth mechanism of fatigue cracks under mode II and mode III loadings. Fatigue Fract Eng M 26: 523–531

    Article  CAS  Google Scholar 

  • Murakami Y, Fukushima Y, Toyama K, Matsuoka S (2008) Fatigue crack path and threshold in Mode II and Mode III loadings. Eng Fract Mech 75: 306–318

    Article  Google Scholar 

  • Nakamura T, Parks DM (1989) Antisymmetrical 3-D stress field near the crack front of a thin elastic plate. J Solids Struct 25: 1411–1426

    Article  Google Scholar 

  • Nayeb-Hashemi H, McClintock FA, Ritchie RO (1983) Micro-mechanical modelling of mode III fatigue crack growth in rotor steels. Int J Fract 23: 163–185

    Article  Google Scholar 

  • Otsuka A, Mori K, Togho K (1987) Mode II fatigue crack growth in aluminium alloys. Curr Jpn Mat Res 1: 149–180

    Google Scholar 

  • Pinna C, Doquet V (1999) The preferred fatigue crack propagation mode in a M250 maraging steel loaded in shear. Fatigue Fract Eng M 22: 173–183

    Article  CAS  Google Scholar 

  • Pindra N, Lazarus V, Leblond JB (2008) The deformation of the front of a 3D interface crack propagating quasistatically in a medium with random fracture properties. J Mech Phys Solids 56: 1269–1295

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Planck R, Kuhn G (1999) Fatigue crack propagation under non-proportional mixed-mode loading. Eng Fract Mech 62: 203–229

    Article  Google Scholar 

  • Pokluda J, Pippan R, Slamecka K, Kolednik O (2005) Can pure mode III fatigue loading contribute to crack propagation in metallic materials?. Fatigue Fract Eng M 28: 179–185

    Article  Google Scholar 

  • Pokluda J, Trattnig G, Martinschitz C, Pippan R. (2008) Straightforward comparison of fatigue crack growth under mode II and mode III. Int J Fatigue 30: 1498–1506

    Article  CAS  Google Scholar 

  • Ritchie RO, McClintock FA, Nayeb-Hashemi H, Ritter MA (1982) Mode III fatigue crack propagation in low alloy steel. Metall Trans A 13: 101–110

    Article  Google Scholar 

  • Smith MC, Smith RA (1988) Toward an understanding of mode II fatigue crack growth, In: Fong JT, Wei RP, Fields RJ, Gangloff RP (eds) Basic questions in fatigue, ASTM STP 924. vol.1:260–280

  • Tschegg EK, Stanzl SE (1988) The significance of sliding mode crack closure on mode III fatigue crack growth. In: Fong JT, Wei RP, Fields RJ, Gangloff RP (eds) Basic questions in fatigue, ASTM STP 924, vol 1, pp 214–232

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Doquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doquet, V., Bui, Q.H., Bertolino, G. et al. 3D shear-mode fatigue crack growth in maraging steel and Ti-6Al-4V. Int J Fract 165, 61–76 (2010). https://doi.org/10.1007/s10704-010-9504-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9504-7

Keywords

Navigation