Skip to main content
Log in

Energy in the Schwarzschild-de Sitter Spacetime

  • Original Article
  • Published:
Foundations of Physics Letters

Abstract

The energy (due to matter and fields including gravitation) of the Schwarzschild-de Sitter spacetime is investigated by using the Møller energy-momentum definition in both general relativity and teleparallel gravity. We found the same energy distribution for a given metric in both of these different gravitation theories. It is also independent of the teleparallel dimensionless coupling constant, which means that it is valid in any teleparallel model. Our results sustain that (a) the importance of the energy-momentum definitions in the evaluation of the energy distribution of a given spacetime and (b) the viewpoint of Lessner that the Møller energy-momentum complex is a powerfifi concept of energy and momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. S. Shankaranarayanan, Phys. Rev. D67, 084026 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  2. 2. A. Einstein, Sitzungsber. Preus. Akad. Wiss. Berlin (Math. Phys.) 778 (1915), Addendum, ibid. 799 (1915).

    Google Scholar 

  3. 3. L. D. Landau and E. M. Lifshitz, eds., The Classical theory of fields (Pergamon, 4th Edition, Oxford, re-printed in 2002). P. G. Bergmann and R. Thomson, Phys. Rev. 89, 400 (1953). S. Weinberg, Gravitation and Cosmology: Principle and Applications of General Theory of Relativity (Wiley, New York, 1972). A. Papapetrou, Proc. R. Irish. Acad. A52, 11 (1948). C. Møller, Ann. Phys. (NY) 4, 347 (1958). R. C. Tolman, Relativity, Thermodynamics and Cosmology (Oxford, London, 1934). A. Qadir and M. Sharif, Phys. Lett. A167, 331 (1992).

    Google Scholar 

  4. 4. F. I. Mikhail, M. I. Wanas, A. Hindawi, and E. I. Lashin, Int. J. Theor. Phys. 32, 1627 (1993). T. Vargas, Gen. Rel. and Grav. 36, 1255 (2004).

    Article  MathSciNet  Google Scholar 

  5. 5. K. S. Virbhadra, Phys. Rev. D 60, 104041 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  6. 6. N. Rosen, Gen. Rel. Grav. 26, 319 (1994). V. B. Johri, D. Kalligas, G. P. Singh and C. W. F. Everitt, Gen. Rel. Grav. 27, 323 (1995). N. Banerjee and S. Sen, Pramana-J. Phys. 49, 609 (1997).

    Article  Google Scholar 

  7. 7. K. S. Virbhadra, Phys. Rev. D 41, 1086 (1990); Phys. Rev. D42, 2919 (1990). A. Chamorro and K. S. Virbhadra, Int. J. Mod. Phys. D5, 251 (1996).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. 8. I. Radinschi, Mod. Phys. Lett. A 15, 2171 (2000); Fizika B9, 43 (2000); Chin. J. Phys. 42, 40 (2004); Fizika B14, 3 (2005); Mod. Phys. Lett. A 17, 1159 (2002). U.V.T., Physics Series 42, 11 (2001). Ragab M. Gad, Astrophys. Space Sci. 295, 459 (2005). E. Vagenas, Int. J. Mod. Phys. A 18, 5781 (2003); Int. J. Mod. Phys. A 18, 5949 (2003); Mod. Phys. Lett. A19, 213 (2004); Int. J. Mod. Phys. D14, 573 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. 9. M. Salti and A. Havare, Int. J. Mod. Phys. A20, 2169 (2005). O. Aydogdu and M. Salti, Astrophys. Space Sci. 299, 227 (2005). O. Aydogdu, M. Salti, and M. Korunur, Acta. Phys. Slov. 55, 537 (2005). M. Salti, Astrophys. Space Sci. 299, 159 (2005); Nuovo Cim. B 120, 53 (2005); Acta. Phys. Slov. 55, 563 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  10. 10. R. Weitzenbøck, Invariantten Theorie (Noordhoff, Groningen, 1923).

    Google Scholar 

  11. 11. K. Hayashi and T. Shirafuji, Phys. Rev. D 19, 3524 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  12. 12. V. V. de Andrade and J. G. Pereira, Phys. Rev. D 56, 4689 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  13. 13. C. Møller, Mat. Fys. Medd. K. Vidensk. Selsk. 39, 13 (1978); 1, 10 (1961).

    Google Scholar 

  14. 14. D. Saez, Phys. Rev. D27, 2839 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  15. 15. H. Meyer, Gen. Rel. Grav. 14, 531 (1982).

    Article  Google Scholar 

  16. 16. K. Hayashi and T. Shirafuji, Prog. Theor. Phys. 64, 866 (1980); 65, 525 (1980).

    ADS  MathSciNet  Google Scholar 

  17. 17. F. W. Hehl, J. Nitsch and P. von der Heyde, in General Relativity and Gravitation, A. Held, ed. (Plenum, New York, 1980).

    Google Scholar 

  18. 18. H. P. Robertson, Ann. Math. (Princeton) 33, 496 (1932).

    Article  MATH  Google Scholar 

  19. 19. Wolfram Research, Mathematica 5.0 (2003).

    Google Scholar 

  20. 20. TCI Software Research, Scientific Workplace 3.0 (1998).

    Google Scholar 

  21. 21. A. Chamorro and K. S. Virbhadra, Int. J. Mod. Phys. D 5, 251 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  22. 22. S. S. Xulu, preprint: gr-qc/0010068.

  23. 23. G. Lessner, Gen. Relativ. Grav. 28, 527 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  24. 24. M. Salti, Mod. Phys. Lett. A20, 2175 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mustafa Salti or Oktay Aydogdu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salti, M., Aydogdu, O. Energy in the Schwarzschild-de Sitter Spacetime. Found Phys Lett 19, 269–276 (2006). https://doi.org/10.1007/s10702-006-0517-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10702-006-0517-4

Key words:

Navigation