Skip to main content
Log in

Experimental Test of a Time-Temperature Formulation of the Uncertainty Principle Via Nanoparticle Fluorescence

  • Published:
Foundations of Physics Letters

No Heading

The uncertainty in the measured fluorescence decay lifetimes of 30 nm particles of YAG:Cc was used to evaluate the predictions of a novel form of the Heisenberg uncertainty principle suggested by de Sabbata and Sivaram, ΔT Δth/k. The worst-case uncertainty in temperature of ≈ 4.5 °K (as derived from the relationship between temperature and lifetime) and the measured uncertainty in decay lifetime, ≈ 0.45 ns, yielded an “internal” estimate of ΔT Δt = 2.0 × 10−9 °K s, which is ≈ 263 times larger than ħ/k = 7.6 × 10−12 °K s. An “external” estimate of ΔT Δt = 4.5 × 1011 °K s (which is = 6 times ħ/k) is derived from the independently measured uncertainty in the temperature of the sample and the experimentally determined uncertainty in lifetime. These results could be low by a factor of 5.6 if signal averaging must be taken into account. If valid, the findings are consistent with the predictions of this version of the uncertainty principle and they imply the existence of a type of “thermal quantum limit.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. H. Heffner, Proc. IRE 50, 1604 (1962).

    Article  Google Scholar 

  2. 2. T. Yoneya, Mod. Phys. Lett. A 4, 1587 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  3. 3. S. Abe and N. Suzuki, Phys. Rev. A 41, 4608 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  4. 4. V. de Sabbata and C. Sivaram, Found. Phys. Lett. 5, 183 (1992).

    Article  MathSciNet  Google Scholar 

  5. 5. V. de Sabbata, Nuovo. Cim. A 107, 363 (1994).

    Article  ADS  Google Scholar 

  6. 6. T. Kobayashi, Phys. Lett. A 207, 320 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  7. 7. T. Kobayashi, Phys. Lett. A 210, 241 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  8. 8. T. Kobayashi, Phys. Lett. A 222, 26 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  9. 9. T. Kobayashi, Nuovo. Cim. B 113, 633 (1998).

    ADS  Google Scholar 

  10. 10. T. Kobayashi, Nuovo. Cim. B 116, 493 (2001).

    ADS  Google Scholar 

  11. 11. G. W. Ford and R. F. O’Connell, Am. J. Phys. 70, 319 (2002).

    Article  ADS  Google Scholar 

  12. 12. S. W. Allison, G. T. Gillies, A. J. Rondinone, and M. R. Cates, Nanotechnology 14, 859 (2003).

    Article  ADS  Google Scholar 

  13. 13. W. H. Fonger, and C.W. Struck, J. Chem. Phys. 52, 6364 (1970).

    Article  ADS  Google Scholar 

  14. 14. C. W. Struck and W. H. Fonger, J. Appl. Phys. 42, 4515 (1971).

    Article  ADS  Google Scholar 

  15. 15. K. T. V. Grattan and Z. Y. Zhang, Fiber Optic Fluorescence Thermometry (Chapman & Hall, London, 1995).

    Google Scholar 

  16. 16. S. W. Allison and G. T. Gillies, Rev. Sci. Instrum. 68, 2615 (1997).

    Article  ADS  Google Scholar 

  17. 17. L. J. Dowell, Investigation and Development of Phosphor Thermometry, Ph.D. Dissertation, University of Virginia, 1989.

    Google Scholar 

  18. 18. G. T. Gillies, S. W. Allison, and B. M. Tissue, Nanotechnology 13, 484 (2002).

    Article  ADS  Google Scholar 

  19. 19. S. W. Allison, M. R. Cates, and G. T. Gillies, Rev. Sci. Instrum. 73, 1832 (2002).

    Article  ADS  Google Scholar 

  20. 20. N. F. Ramsey, IEEE Trans. Instrum. Meas. 36, 155 (1987).

    Article  Google Scholar 

  21. 21. N. F. Ramsey, J. Phys. II (Paris) 2, 573 (1992).

    Google Scholar 

  22. 22. N. F. Ramsey, Physica Scripta T59, 26 (1995).

    Article  ADS  Google Scholar 

  23. 23. Y. Aharonov and B.Reznik, Phys. Rev. Lett. 84, 1368 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  24. 24. P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 72, 351 (2000).

    Article  ADS  Google Scholar 

  25. 25. G. T. Gillies and S. W. Allison, “Experimental test of a time-temperature formulation of the uncertainty principle,” The Gravitational Constant: Generalized Gravitational Theories and Experiments, V. de Sabbata, G. T. Gillies, and V. N. Melnikov, eds. (Kluwer Academic, Dordrecht, 2004), p 139.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. T. Gillies or S. W. Allison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillies, G., Allison, S. Experimental Test of a Time-Temperature Formulation of the Uncertainty Principle Via Nanoparticle Fluorescence. Found Phys Lett 18, 65–74 (2005). https://doi.org/10.1007/s10702-005-2470-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10702-005-2470-z

Key words:

Navigation