Skip to main content
Log in

Digestive enzymatic activity on Tropical gar (Atractosteus tropicus) larvae fed different diets

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Digestive enzymatic activity and growth performance on tropical gar (Atractosteus tropicus) larvae fed Artemia nauplii (LF), frozen adult Artemia (AB), an artificial diet (AF) with 46% protein and 16% lipids and a starvation group (SG) from first feeding (5 days after hatching—5 DAH) to 34 DAH were studied. All larvae under starvation (SG) died at 15 DAH. By the end of the experimental period, morphological variables (total length, wet weight and specific growth rate) were significant in larvae fed AF compared to LF and AB. All enzymes studied in the experiment were present since the start of exogenous feeding (including pepsin) and the enzymatic activity varied with the diets. Low levels of enzymatic activity were observed until the 29 DAH; however, after this moment, there was a significant increase (eightfold), particularly for the AF treatment. In vitro protein digestibility tests performed with enzymatic extracts showed that artificial diets with 52% protein and 14% lipids were better digested by larvae before 30 DAH, while diets with 45% protein and 11% lipids were better digested after this age. Taking into account the better growth performance, higher enzymatic activity and better protein digestibility obtained, artificial diets can be used since the start of exogenous feeding on tropical gar larvae, as in other lepisosteids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera C, Mendoza R, Rodríguez G, Márquez G (2002) Morphological description of alligator gar and tropical gar larvae, with an emphasis on growth indicators. Trans Am Fish Soc 131:899–909

    Article  Google Scholar 

  • Alarcon FJ, Moyano FJ, Diaz M, Fernandez-Diaz C, Yúfera M (1999) Optimization of the protein fraction of microcapsules used in feeding of marine fish larvae using in vitro digestibility techniques. Aquac Nutr 5:107–113

    Article  Google Scholar 

  • Anson ML (1938) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22:79–89

    Article  PubMed  CAS  Google Scholar 

  • Baragi V, Lovell RT (1986) Digestive enzyme activities in striped bass from first feeding through larval development. Trans Am Fish Soc 115:478–484

    Article  CAS  Google Scholar 

  • Barrows FT (2000) Larval feeds: two methods for production of on-size, microbound particles. Glob Aquaculture Advocate 3(1):61–63

    Google Scholar 

  • Bassompierre M, Larsen KL, Zimmermann W, McLean E (1998) Comparison of chemical, electrophoretic and in vitro digestion methods for predicting fish meal nutritive quality. Aquac Nutr 4:232–239

    Article  Google Scholar 

  • Bernfeld P (1951) Amylases (alpha) and (beta). In: Colowick S, Kaplan N (eds) Methods in enzymology, vol 1. Academic Press, New York, pp 149–158

    Chapter  Google Scholar 

  • Blaxter JHS, Hempel G (1963) The influence of egg size on herring larvae. J Cons Perm Int Explor Mer 28:211–240

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buddington RK (1985) Digestive secretions of lake sturgeon, Acipenser fulvescens, during early development. J Fish Biol 26:715–723

    Article  Google Scholar 

  • Buddington RK, Doroshov SI (1986) Development of digestive secretions in white sturgeon juveniles (Acipenser transmontanus). Comp Biochem Physiol 83A:233–238

    Article  CAS  Google Scholar 

  • Castro-Mejia J, Espindola-Ronquillo Y, Castro-Mejia G, Cremiux-Grimaldi JC (2009) Efecto de dos dietas proteicas en el crecimiento y sobrevivencia de prejuveniles de Atractosteus tropicus Gill, 1863 (Pejelagarto). BIOCYTE 2(8):77–88

    Google Scholar 

  • Chen BN, Qin JG, Carragher JF, Clarke SM, Kumar MS, Hutchinson WG (2007) Deleterious effects of food restrictions in yellowtail kingfish Seriola lalandi during early development. Aquaculture 271:326–335

    Article  Google Scholar 

  • Clay TA (2009) Growth, survival, and cannibalism rates of alligator gar Atractosteus spatula in recirculating aquaculture systems. Dissertation, Nicholls State University

  • Comabella Y, Mendoza R, Aguilera C, Carrillo O, Hurtado A, García-Galano T (2006) Digestive enzyme activity during early larval development of the Cuban gar Atractosteus tristoechus. Fish Physiol Biochem 32:147–157

    Article  CAS  Google Scholar 

  • CONAPESCA (2008) Comisión Nacional de Acuacultura y Pesca, Anuario Estadístico de Acuacultura y Pesca. Mazatlán, Sinaloa, México: CONAPESCA_SAGARPA, pp 213

  • Conceicao LEC, Aragao C, Richard N, Engrola S, Gavaia P, Mira S, Dias J (2010) Novel methodologies in marine fish larval nutrition. Fish Physiol Biochem 36:1–16

    Article  PubMed  CAS  Google Scholar 

  • Dabrowski K, Krumschnabel G, Paukku M, Labanowski J (1992) Cyclic growth and activity of pancreatic enzymes in alevins of Arctic charr (Salvelinus alpinus L.). J Fish Biol 40:511–521

    Article  CAS  Google Scholar 

  • Erlanger FE, Kokoswky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  PubMed  CAS  Google Scholar 

  • Galgani F, Nagayama F (1986) Characteristic of digestive proteolysis of crabs Portunus triberculatus, Portunus sanguinolentus and Charybdis japonica. Bull Jpn Soc Sci Fish 52:2183–2188

    Article  Google Scholar 

  • Hernández U (1999) Punto crítico de no-retorno en larvas de pejelagarto Atractosteus tropicus (Gill, 1863). Dissertation, Universidad Juárez Autónoma de Tabasco

  • Hjelmeland K, Pedersen BH, Nielssen EM (1988) Trypsin content in intestines of herring larvae, Clupea harengus, ingesting inert polystrene spheres or live crustacea prey. Mar Biol 98:331–335

    Article  CAS  Google Scholar 

  • Hoque M, Takemura A, Takano K (1998) Annual changes in oocyte development and serum vitellogenin level in the rabbitfish Siganus canaliculatus (Park) in Okinawa, Southern Japan. Fisheries Sci 64(1):44–51

    CAS  Google Scholar 

  • Lauff M, Hofer R (1984) Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture 37:335–346

    Article  CAS  Google Scholar 

  • Lazo J, Mendoza R, Holt J, Aguilera C, Arnold C (2007) Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture 265(1–4):194–205

    Article  CAS  Google Scholar 

  • Maldonado EC, Ponce JT (1991) Aprovechamiento de peces forrajeros en la alimentación del pejelagarto Atractosteus tropicus Gill en jaulas flotantes en el Estado de Tabasco, México. Universidad y Ciencia 8(15):77–90

    Google Scholar 

  • Márquez H (1998) Efectos de la temperatura en el desarrollo de embriones y en crecimiento de las larvas de pejelagarto Atractosteus tropicus bajo condiciones de Laboratorio. Dissertation, Universidad Juárez Autónoma de Tabasco. Tabasco

  • Martínez I, Moyano FJ, Fernández-Díaz C, Yúfera M (1999) Digestive enzyme activity during larvla development of Senegal sole (Solea senegalensis). Fish Physiol Biochem 21:317–323

    Article  Google Scholar 

  • Mendoza R, Aguilera C, Rodriguez G, González M, Castro R (2002) Morphophysiological studies on alligator gar (Atractosteus spatula) larval development as a basis for their culture and repopulation of their natural habitats. Rev Fish Biol Fisher 12:133–142

    Article  Google Scholar 

  • Mendoza R, Aguilera C, Ferrara A (2008a) Gar biology and culture: status and prospects. Aquacult Res 39:748–763

    Article  Google Scholar 

  • Mendoza R, Aguilera C, Carron L, Montemayor J, Gonzalez M (2008b) Weaning of Alligator Gar (Atractosteus spatula) larvae to artificial diets. Aquac Nutr 14:223–231

    Article  Google Scholar 

  • Moyano FJ, Diaz M, Alarcon FJ, Sarasquete MC (1996) Characterization of digestive enzyme activity during larval development of gilthead sea bream (Sparus aurata). Fish Physiol Biochem 15:121–130

    Article  CAS  Google Scholar 

  • Munilla R, Saborido F (1996) Digestive enzymes in marine species I. Proteinase activities in gut from redfish (Sebastes mentella), seabream (Sparus aurata) and turbot (Scophthalmus maximus). Comp Biochem Physiol 113B:395–402

    Google Scholar 

  • Munilla R, Stark R (1989) Protein digestion in early turbot larvae Scophthalmus maximuis (L.). Aquaculture 81:315–327

  • Nguyen HQ, Reinertsen H, Wold P, Tran TM, Kjørsvik E (2010) Effects of early weaning strategies on growth, survival and digestive enzyme activities in cobia (Rachycentron canadum L.) larvae. Aquacult Int. doi:10.1007/s10499-010-9341-8

  • Oozeki Y, Bailey KM (1995) Ontogenetic development of digestive enzyme activities in larval walleye Pollock, Theragra chalcogramma. Mar Biol 112:177–186

    Google Scholar 

  • Shan X, Huang W, Cao L, Wu Y (2008) Advances in studies of the effects of starvation on growth and development of fish larvae. J Ocean Univ China 7(3):319–326

    Article  Google Scholar 

  • Steel R, Torrie J (1980) Principles and procedures of statistics: a biometrical approach, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Tanaka M (1971) Studies on the structure and function of the digestive system in teleost larvae-iii. development of the digestive system during postlarval stage. Japanese J Ichtiol 18(4):164–174

    Google Scholar 

  • Walter HE (1984) Proteinases: methods with haemoglobin, casein and azocoll as substrates. In: Bergmeyer J, Grad M (eds) Methods of enzymatic analysis, vol 5. Verlag Chemie, Weinheim, Germany, pp 270–277

    Google Scholar 

  • Zambonino JL, Cahu CL (2007) Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture 268:98–105

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Programa de Apoyo a la Investigación Científica y Tecnológico (Ref: PAICYT CN1100-06) for financing the Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Mendoza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilera, C., Mendoza, R., Iracheta, I. et al. Digestive enzymatic activity on Tropical gar (Atractosteus tropicus) larvae fed different diets. Fish Physiol Biochem 38, 679–691 (2012). https://doi.org/10.1007/s10695-011-9550-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-011-9550-8

Keywords

Navigation