Skip to main content
Log in

A New Fire Resistant Light Mineral Wool

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

A comprehensive research project on the fire performance of a new light mineral wool has been carried out at ETH Zurich in collaboration with the Swiss Federal Laboratories for Materials Science and Technology (EMPA). A large number of small-scale fire tests permitted the analysis of different parameters on the fire performance of the new mineral wool. The results of the fire tests allowed the verification and calibration of thermal properties used for thermal finite element (FE) analysis. Based on an extensive FE parametric study, the coefficients for the new mineral wool to be used in the design model for the verification of the separating function of light timber frame wall and floor assemblies were calculated. The paper first describes the main results of the experimental and numerical analyses. Then, the calculation of the coefficients for the new mineral wool to be used in the design model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Papadopoulos A.M. State of the art in thermal insulation materials and aims for future developments, Energy and Buildings 2005, 37: 77–86.

    Article  Google Scholar 

  2. Frangi A., Knobloch M., Fontana M. Fire design of timber slabs made of hollow core elements, Engineering Structures 2009, 31: 150–157.

    Article  Google Scholar 

  3. Schleifer V, Frangi A, Fontana M (2007) Experimentelle Untersuchungen zum Brandverhalten von Plattenelementen, Institute of Structural Engineering IBK, ETH Zurich, IBK-report No. 302

  4. Coray S., Hug R., Brandverhalten von Dämmplatten aus Glaswolle, Projektarbeit (Master), Institute of Structural Engineering IBK, ETH Zurich, 2008.

    Google Scholar 

  5. König J, Oksanen T, Towler K (2000) A review of component additive methods used for the determination of fire resistance of separating light timber frame construction, Paper CIB-W18/33-16-2, CIB Working Commission W18—Timber Structures, Delft, Netherlands

  6. EN 1995-1-2 (2004) Eurocode 5—design of timber structures, part 1–2: general—structural fire design, European Standard, CEN, Brussels

  7. König J. Structural fire design according to Eurocode 5 - Design rules and their background. Fire and Materials 2005; 29:147–163.

    Article  Google Scholar 

  8. Schleifer V (2009) Zum Verhalten von raumabschliessenden mehrschichtigen Holzbauteilen im Brandfall, PhD Thesis ETH No. 18156, ETH Zurich

  9. Frangi A., Schleifer V., Fontana M., Design model for the verification of the separating function of light timber frame assemblies, Engineering Structures 2010, 32: 1184–1195.

    Article  Google Scholar 

  10. EN 13501-2 (2007) Fire classification of construction products and building elements—part 2: classification using data from fire resistance tests, excluding ventilation services, European Standard, European Standard, CEN, Brussels

  11. EN 520 (2004) Gypsum plasterboards, definitions, requirements and test methods, European Standard, CEN, Brussels

  12. EN 15283-2 (2008) Gypsum boards with fibrous reinforcement—definitions, requirements and test methods—part 2: gypsum fibre boards; European Standard, CEN, Brussels

  13. ISO 834-1 (1999) Fire-resistance tests—elements of building construction—part 1: general requirements

  14. EN 312 (2003) Particleboards—specifications, European Standard, CEN, Brussels

  15. ANSYS Inc. ANSYS Workbench Version 11.0, Canonsburg, USA

  16. EN 1991-1-2 (2002) Eurocode 1: actions on structures—part 1–2: general actions—actions on structures exposed to fire, European Standard, CEN, Brussels

  17. Thomas G., Thermal properties of gypsum plasterboards at high temperatures, Fire and Materials 2002, 26: 37-45.

    Article  Google Scholar 

  18. Källsner B, König J (2000) Thermal and mechanical properties of timber and some other materials used in light timber frame construction, paper CIB-W18/33-16-3, CIB Working Commission W18—Timber Structures, Delft, Netherlands

  19. Just A (2009) Full scale wall tests of timber frame assemblies, Test report, Tallinn, University of Technology

  20. Versuchsbericht Nr. 210003433-1 (April 2004) Materialprüfanstalt Nordrhein-Westfalen

  21. Frangi A., Erchinger C., Fontana M., Charring model for timber frame floor assemblies with void cavities, Fire Safety Journal 43 (2008) 551–564.

    Article  Google Scholar 

  22. Studhalter J (2007) Beurteilungsgrundlagen für die werkstoffoptimierten Bauteile Isover, Lignum-Dokumentation Brandschutz: Bauteile in Holz—Decken, Wände und Bekleidungen mit Feuerwiderstand

  23. Just A, Schmid J, König J (2010) Failure times of gypsum plasterboards, Interflam 2010. In: Proceedings of the 12th international conference, 5 July 2010, Nottingham, UK

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Frangi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frangi, A., Schleifer, V. & Hugi, E. A New Fire Resistant Light Mineral Wool. Fire Technol 48, 733–752 (2012). https://doi.org/10.1007/s10694-010-0209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-010-0209-2

Keywords

Navigation