Skip to main content
Log in

The Ariel ground segment and instrument operations science data centre

Organization, operation, calibration, products and pipeline

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The ground segment for the ESA M4 Ariel exoplanet space mission is introduced. The ground segment encompasses the framework necessary to support the development of the Ariel mission to launch, in-flight operations and calibration, data processing pipeline and data handling, including user support. The structure of the ground segment and assumed responsibilities between ESA and the Ariel mission consortium is explained, along with their interfaces. The operational phases for the mission are introduced, including the early commissioning/verification phases, the science operations and the calibration strategy. The smooth transition of the ground segment through the various pre/post launch mission phases to nominal operations will be paramount in guaranteeing the success, scientific return and impact of the Ariel mission. The expected science data products are defined and a representative data processing pipeline is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barclay, T., Pepper, J., Quintana, E.V.: A revised exoplanet yield from the transiting exoplanet survey satellite (TESS). ApJS 239, 2 (2018)

    Article  ADS  Google Scholar 

  2. Berta, Z., et al.: The flat transmission spectrum of the super-earth GJ1214b from wide field camera 3 on the Hubble space telescope. ApJ 747, 35 (2012)

    Article  ADS  Google Scholar 

  3. Blank, R., et al.: The HxRG family of high performance image sensors for astronomy. Astron. Soc. Pac. Conf. Ser. 437, 383 (2011)

    ADS  Google Scholar 

  4. Ciardi, et al.: Characterizing the variability of stars with early-release Kepler data. AJ 141, 108 (2011)

    Article  ADS  Google Scholar 

  5. Eccleston, P., et al.: An integrated payload design for the atmospheric remote-sensing infrared exoplanet large-survey (ARIEL). Proc. SPIE 9904, 33 (2016)

    Google Scholar 

  6. Edwards, B.N., Mugnai, L., Tinetti, G., Pascale, E., Sarkar, S.: An updated study of potential targets for ariel. AJ 157, 242 (2019)

    Article  ADS  Google Scholar 

  7. Focardi, M., et al.: The ARIEL instrument control unit design for the M4 mission selection review of the ESA’s cosmic vision program. Exp. Astron. 46, 1 (2018)

    Article  ADS  Google Scholar 

  8. Feuchtgruber, H., et al.: New wavelength determinations of mid-infrared fine-structure lines by infrared space observatory short wavelength spectrometer. ApJ 487, 962 (1997)

    Article  ADS  Google Scholar 

  9. Garcia-Piquer, A., Ribas, I., Colomé, J.: Artificial intelligence for the EChO mission planning tool. Exp. Astron. 40, 671 (2015)

    Article  ADS  Google Scholar 

  10. Giardino, G., et al.: NIRSpec detectors: noise properties and the effect of signal dependent inter-pixel crosstalk. Proc. SPIE 8453, 84531T (2012)

    Article  Google Scholar 

  11. Gilliland, R.L., Chaplin, W.J., Jenkins, J.M., Ramsey, L.W., Smith, J.C.: Kepler mission stellar and instrument noise properties revisited. AJ 150, 133 (2015)

    Article  ADS  Google Scholar 

  12. Glasse, A., Lee, D., Parr-Burman, P., Hayton, D., Mazy, E.: Onboard calibration sources for the mid-infrared instrument (MIRI) on the James Webb space telescope. Proc. SPIE 6265, 39 (2006)

    ADS  Google Scholar 

  13. Horne, K.: An optimal extraction algorithm for CCD spectroscopy. PASP 98, 609 (1986)

    Article  ADS  Google Scholar 

  14. Ishihara., D. et al.: The AKARI/IRC mid-infrared all-sky survey. A&A 514, 1 (2010)

  15. Jarrett, T.H., Cohen, M., Masci, F., et al.: The Spitzer-WISE survey of the ecliptic poles. ApJ 735, 112 (2011)

    Article  ADS  Google Scholar 

  16. Krick, J.E: The infrared array camera dark field:, far-infrared to x-ray data. ApJS 185, 85 (2009)

    Article  ADS  Google Scholar 

  17. Mandel, K., Agol, E.: Analytic light curves for planetary transit searches. ApJL 580, L171 (2002)

    Article  ADS  Google Scholar 

  18. Mayor, M., Queloz, D.: A Jupiter-mass companion to a solar-type star. Nature 378, 355 (1995)

    Article  ADS  Google Scholar 

  19. Morales, J.C., Beaulieu, J.-P., Coudé du Foresto, V., et al.: Scheduling the EChO survey with known exoplanets. Exp. Astron. 40, 655 (2015)

    Article  ADS  Google Scholar 

  20. Morales, J.C., et al.: Experimental Astronomy, in preparation (2020)

  21. Mugnai, L., Edwards, B., Papageorgiou, A., Pascale, E., Sarkar, S.: ArielRad: the ARIEL Radiometric Model, EPSC, 2019, vol. 13 EPSC-DPS2019-270 (2019)

  22. Ott, S., et al.: The Herschel Data Processing System. ASP Conf. Ser. 351, 516 (2006)

    ADS  Google Scholar 

  23. Pascale, E., et al.: EChOSim: The Exoplanet Characterisation Observatory software simulator. Exp. Astron. 40, 601 (2015)

    Article  ADS  Google Scholar 

  24. Pilbratt, G., et al: Herschel space observatory. An ESA facility for far-infrared and submillimetre astronomy. A&A 518, L1 (2010)

    Article  ADS  Google Scholar 

  25. Price, S.D., Paxson, C., Engelke, C., Murdock, T.L.: Spectral irradiance calibration in the infrared. XV. Absolute calibration of standard stars by experiments on the midcourse space experiment. AJ 128, 889 (2004)

    Article  ADS  Google Scholar 

  26. Ramos-Larios, G., Santamaria, E., Guerrero, M.A., Marquez-Lugo, R.A., Sabin, L., Toala, J.A.: Rings and arcs around evolved stars - I. Fingerprints of the last gasps in the formation process of planetary nebulae. MNRAS 462, 610 (2016)

    Article  ADS  Google Scholar 

  27. Rauer, H., et al.: The PLATO 2.0 mission. Exp. Astron. 38, 249 (2014)

    Article  ADS  Google Scholar 

  28. Rauscher, B.J., Fox, O.: Detectors for the James Webb space telescope near-infrared spectrograph. i. Readout mode, noise model, and calibration considerations. PASP 119, 768 (2007)

    Article  ADS  Google Scholar 

  29. Ressler, M.E., et al.: The mid-infrared instrument for the james webb space telescope, VIII: the MIRI focal plane system. PASP 127, 953 (2015)

    Article  Google Scholar 

  30. Sarkar, S., Pascale, E., Papageorgiou, A., Johnson, L.J., Waldmann, I.: ExoSim:, the Exoplanet Observation Simulator. arXiv:2002.03739(2020)

  31. Tinetti, G., et al.: The science of ARIEL. Proc. SPIE 9904, 1 (2016)

    Google Scholar 

  32. Tinetti, G., et al.: A chemical survey of exoplanets with ARIEL. Exp. Astron. 46, 135 (2018)

    Article  ADS  Google Scholar 

  33. Vacca, W.D., Cushing, M.C., Rayner, J.: Nonlinearity corrections and statistical uncertainties associated with near-infrared arrays. PASP 116, 352 (2004)

    Article  ADS  Google Scholar 

  34. Valentijn, E.A., et al.: The wavelength calibration and resolution of the SWS. A&A 315, 60 (1996)

    Google Scholar 

  35. Wolszczan, A., Frail, D.A.: A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355, 145 (1992)

    Article  ADS  Google Scholar 

  36. Zingales, T., Tinetti, G., Pillitteri, I., Leconte, J., Micela, G.: The ARIEL mission reference sample. Exp. Astron. 2017(46), 67 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Ariel mission payload is developed by a consortium of more than 50 institutes from 17 ESA countries – which include the UK, France, Italy, Poland, Belgium, Spain, the Netherlands, Austria, Denmark, Ireland, Norway, Sweden, Czech Republic, Hungary, Portugal, Germany,Estonia – and a NASA contribution. We acknowledge the support of the Ariel ASI-INAF agreement n. 2018-22-HH.0. S.S. and A.P. were supported by United Kingdom Space Agency (UKSA) grant: ST/S002456/1. The authors would like to thank the anonymous referee, whose comments improved the clarity of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Pearson.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearson, C., Malaguti, G., Sarkar, S. et al. The Ariel ground segment and instrument operations science data centre. Exp Astron 53, 773–806 (2022). https://doi.org/10.1007/s10686-020-09691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-020-09691-8

Keywords

Navigation