Skip to main content
Log in

Brown dwarf characterization with EChO

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The Exoplanet Characterization Observatory (EChO) is a space mission concept dedicated to the analysis of exoplanet atmospheres using low-resolution spectroscopy in the infrared region between 0.55 and 11 μm. A fraction of its time will be used for ancillary science. We discuss here the prospect of a small survey of L and T-type brown dwarfs. These cold objects show properties comparable to those of giant planets, with the advantage of being brighter and not perturbed by host stars, therefore, they are very useful to understand processes and properties of planet atmospheres. At the same time, brown dwarfs still pose some challenges to stellar models that must include the formation of clouds and sedimentation processes that occur at the low temperatures of these objects. Hence, our aim is to build up an homogeneous catalogue of spectra of brown dwarfs as well as to characterize the spectral variability observed on some of them, which is attributed to the presence of clouds in their atmospheres. We demonstrate that EChO could provide the spectra of brown dwarfs between 1 and 11 μm with enough accuracy to reach these goals. We also present the current number of known brown dwarfs and we suggest a list of possible targets, although future surveys will probably provide better targets at the time of EChO launch if the mission is selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://dwarfarchives.org

References

  1. Archterberg, R.K., Conrath, B.J., Gierasch, P.J.: Icarus 182, 169 (2006)

    Article  ADS  Google Scholar 

  2. Allard, F., Homeier, D., Freytag, B.: ASPC 448, 91 (2011)

    ADS  Google Scholar 

  3. Allard, F., Homeier, D., Freytag, B., Schaffenberger, W., Rajpurohit, A.S.: MSAIS 24, 128 (2013)

    ADS  Google Scholar 

  4. Anderson, D.R., Collier Cameron, A., Hellier, C., et al.: ApJ 726, L19 (2011)

    Article  ADS  Google Scholar 

  5. Apai, D., Radigan, J., Buenzli, E., Burrows, A., Reid, I.N., Jayawardhana, R.: AJ 768, 121 (2013)

    Article  ADS  Google Scholar 

  6. Artigau, É., Bouchard, S., Doyon, R., Lafrenière, D.: ApJ 701, 1534 (2009)

    Article  ADS  Google Scholar 

  7. Baraffe, I.: Astrophysics and Space Science Library, 401, 141 (2014)

  8. Baraffe, I., Chabrier, G., Barman, T.S., Allard, F., Hauschildt, P.H.: A&A 402, 701 (2003)

    Article  ADS  Google Scholar 

  9. Biller, B.A., Crossfield, I.J.M., Mancini, L., et al.: ApJ 778, L10 (2013)

    Article  ADS  Google Scholar 

  10. Bouchy, F., Deleuil, M., Guillot, T., et al.: A&A 525, 68 (2011)

    Article  ADS  Google Scholar 

  11. Burgasser, A.J.: ASPC 450, 113 (2011)

    ADS  Google Scholar 

  12. Burgasser, A.J., Kirkpatrick, J.D., Brown, M.E., et al.: AJ 564, 421 (2002)

    Article  Google Scholar 

  13. Buenzli, E., Apai, D., Morley, C.V., et al.: ApJ 760, L31 (2012)

    Article  ADS  Google Scholar 

  14. Buenzli, E., Apai, D., Radigan, J., Reid, I.N., Flateau, D.: ApJ 782, 77 (2014)

    Article  ADS  Google Scholar 

  15. Clarke, F.J., Hodgkin, S.R., Oppenheimer, B.R., Robertson, J., Haubois, X.: MNRAS, 386 (2009)

  16. Cushing, M.C., Kirkpatrick, J.D., Gelino, C.R., et al.: ApJ 743, 50 (2011)

    Article  ADS  Google Scholar 

  17. Cushing, M.C., Rayner, J.T., Vacca, W.D.: ApJ 623, 1115 (2005)

    Article  ADS  Google Scholar 

  18. Deleuil, M., Deeg, H.J., Alonson, R., et al.: A&A 491, 889 (2008)

    Article  ADS  Google Scholar 

  19. Díaz, R.F., Damiani, C., Deleuil, M., et al.: A&A 551, L9 (2013)

    Article  ADS  Google Scholar 

  20. Golimowski, D.A., Leggett, S.K., Marley, M.S., et al.: AJ 127, 3516 (2004)

    Article  ADS  Google Scholar 

  21. Irwin, J., Buchhave, L., Berta, Z.K., et al.: ApJ, 718 (1353)

  22. Johnson, J.A., Apps, K., Gazak, J.Z., et al.: ApJ 730, 79 (2011)

    Article  ADS  Google Scholar 

  23. Kirkpatrick, J.D.: ARA&A 43, 195 (2005)

    Article  ADS  Google Scholar 

  24. Kirkpatrick, J.D., Gelino, C.R., Cushing, M.C., et al.: ApJ 753, 156 (2012)

    Article  ADS  Google Scholar 

  25. Kumar, S.S.: ApJ 137, 1121 (1963)

    Article  ADS  Google Scholar 

  26. Marley, M.S., Saumon, D., Cushing, M., Ackerman, A.S., Fortney, J.J., Freedman, R.: ApJ 754, 135 (2012)

    Article  ADS  Google Scholar 

  27. McLean, I.S., McGovern, M.R., Burgasser, A.J., Kirkpatrick, J.D., Prato, L., Kim, S.S.: ApJ 596, 561 (2003)

    Article  ADS  Google Scholar 

  28. Morales, J.C., Beaulieu, J.-P., Coudé du Foresto, V., et al.: Experimental Astronomy, in press (2014)

  29. Morley, C.V., Marley, M.S., Fortney, J.J., Lupu, R., Saumon, D., Greene, T., Lodders, K.: ApJ 787, 78 (2014)

    Article  ADS  Google Scholar 

  30. Patience, K., King, R.R., De Rosa, R.J., Vigan, A., Witte, S., Rice, E., Helling, C.h., Hauschildt, P.: vol. 540, p. A85 (2012)

  31. Radigan, J., Jayawardhana, R., Lafrenière, D., Artigau, É., Marley, M., Saumon, D.: ApJ 750, 105 (2012)

    Article  ADS  Google Scholar 

  32. Radigan, J., Lafrenière, D., Jayawardhana, R., Artigau, E.: ApJ 793, 75 (2014)

    Article  ADS  Google Scholar 

  33. Rayner, J.T., Cushing, M.C., Vacca, W.D.: ApJS 185, 289 (2009)

    Article  ADS  Google Scholar 

  34. Scholz, A., Eislöffel, J.: A&A 429, 1007 (2005)

    Article  ADS  Google Scholar 

  35. Simon-Miller, A.A., Conrath, B.J., Gierasch, P.J., Orton, G.S., Archterberg, R.K., Flasar, F.M., Fisher, B.M.: Icarus 180 (98)

  36. Siverd, R.J., Beatty, T.G., Pepper, J., et al.: ApJ 761, 123 (2012)

    Article  ADS  Google Scholar 

  37. Stassun, K.G., Mathieu, R.D., Valenti, J.A., et al.: Nature 440, 311 (2006)

    Article  ADS  Google Scholar 

  38. Tessenyi, M., Ollivier, M., Tinetti, G., et al.: ApJ 746, 45 (2012)

    Article  ADS  Google Scholar 

  39. Tinetti, G., Beaulieu, J.P., Henning, T., et al.: Exp. Astron. 34, 311 (2012)

    Article  ADS  Google Scholar 

  40. Waldmann, I., Pascale, E., Swinyard, B., et al.: EPSC 8, 507 (2013)

    ADS  Google Scholar 

  41. Wilson, P.A., Rajan, A., Patience, J.: A&A 566, A111 (2014)

    Article  ADS  Google Scholar 

  42. Zapataro Osorio, M.R., Martín, E.L., Bouy, H., Tata, R., Deshpande, R., Wainscoat, R.J.: ApJ 647, 1405 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to F. Allard for advice on the use of Phoenix stellar atmosphere models and to A. Burgasser and M. C. Cushing for kindly providing the Jupiter IRTF and CIRS data. We also thank the referee for a thorough and very helpful review of the paper. This research has benefitted from the M, L, T, and Y dwarf compendium housed at DwarfArchives.org. We are grateful to CNES for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Morales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, J.C., Beaulieu, JP., Coudé du Foresto, V. et al. Brown dwarf characterization with EChO . Exp Astron 40, 733–751 (2015). https://doi.org/10.1007/s10686-014-9434-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-014-9434-x

Keywords

Navigation