Skip to main content
Log in

Can natural selection maintain long-distance dispersal? Insight from a stream salamander system

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Dispersal distributions are often characterized by many individuals that stay close to their origin and large variation in the distances moved by those that leave. This variation in dispersal distance can strongly influence demographic, ecological, and evolutionary processes. However, a lack of data on the fitness and phenotype of individual dispersers has impeded research on the role of natural selection in maintaining variation in dispersal distance. Six years of spatially explicit capture-mark-recapture data showed that survival increased with dispersal distance in the stream salamander Gyrinophilus porphyriticus. To understand the evolutionary implications of this fitness response, we tested whether variation in dispersal distance has a phenotypic basis. We used photographs of marked individuals to measure head, trunk, and leg morphology. We then tested whether dispersal distances over the six-year study period were predicted by these traits. Dispersal distance was significantly related to leg morphology: individuals with relatively long forelimbs and short hindlimbs dispersed the farthest. These results support the hypothesis that positive fitness consequences maintain phenotypes enabling long-distance dispersal. More broadly, they suggest that natural selection can promote variation in dispersal distance and associated phenotypes, offering an alternative to the view that dispersal distance is driven by stochastic or landscape-specific mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams DC, Beachy CK (2001) Historical explanations of phenotypic variation in the plethodontid salamander Gyrinophilus porphyriticus. Herpetologica 57:353–364

    Google Scholar 

  • Azizi E (2005) Biomechanics of salamander locomotion. PhD Dissertation, University of Massachusetts

  • Azizi E, Horton JM (2004) Patterns of axial and appendicular movements during aquatic walking in the salamander Siren lacertina. Zoology 107:111–120

    Article  PubMed  Google Scholar 

  • Baumgartner N, Waringer A, Waringer J (1999) Hydraulic microdistribution patterns of larval fire salamanders (Salamandra salamandra salamandra) in the Weidlingbach near Vienna, Austria. Freshw Biol 41:31–41

    Article  Google Scholar 

  • Benard MF, McCauley SJ (2008) Integrating across life-history stages: consequences of natal habitat effects on dispersal. Am Nat 171:553–567

    Article  PubMed  Google Scholar 

  • Bennett AF, Garland T, Else PL (1989) Individual correlation of morphology, muscle mechanics, and locomotion in a salamander. Am J Physiol 256:R1200–R1208

    PubMed  CAS  Google Scholar 

  • Bernatchez L, Duchesne P (2000) Individual-based genotype analysis in studies of parentage and population assignment: how many loci, how many alleles? Can J Fish Aquat Sci 57:1–12

    Article  Google Scholar 

  • Bonte D, Travis JMJ, De Clercq N, Zwertvaegher I, Lens L (2008) Thermal conditions during juvenile development affect adult dispersal in a spider. Proc Natl Acad Sci USA 105:17000–17005

    Article  PubMed  CAS  Google Scholar 

  • Bookstein FL (1989) “Size and shape”: a comment on semantics. Syst Zool 38:173–180

    Article  Google Scholar 

  • Brandon RA (1966) Systematics of the salamander genus Gyrinophilus. The University of Illinois Press, Urbana

    Google Scholar 

  • Brodie ED, Nowack RT, Harvey WR (1979) The effectiveness of antipredator secretions and behavior of selected salamanders against shrews. Copeia 1979:270–274

    Article  Google Scholar 

  • Bruce RC (1980) A model of the larval period of the spring salamander, Gyrinophilus porphyriticus, based on size-frequency distributions. Herpetologica 36:78–86

    Google Scholar 

  • Burton TM (1976) An analysis of feeding ecology of the salamanders (Amphibia: Urodela) of the Hubbard Brook Experimental Forest, New Hampshire. J Herpetol 10:187–204

    Article  Google Scholar 

  • Carlquist S (1981) Chance dispersal. Am Sci 69:509–516

    Google Scholar 

  • Carroll RL, Kuntz A, Albright K (1999) Vertebral development and amphibian evolution. Evol Dev 1:36–48

    Article  PubMed  CAS  Google Scholar 

  • Caswell H, Lensink R, Neubert MG (2003) Demography and dispersal: life table response experiments for invasion speed. Ecology 84:1968–1978

    Article  Google Scholar 

  • Clark ME, Martin TE (2007) Modeling tradeoffs in avian life history traits and consequences for population growth. Ecol Model 209:110–120

    Article  Google Scholar 

  • Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) (2001) Dispersal. Oxford University Press, Oxford

    Google Scholar 

  • Clobert J, Le Galliard JF, Cote J, Meylan S, Massot M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209

    Article  PubMed  Google Scholar 

  • D’Aout K, Aerts P (1999) A kinematic comparison of forward and backward swimming in the eel Anguilla anguilla. J Exp Biol 202:1511–1521

    PubMed  Google Scholar 

  • Darwin C (1859) The origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • Dobzhansky T, Wright S (1943) Genetics of natural populations. X. Dispersal rates in Drosophila pseudoobscura. Genetics 28:304–340

    PubMed  CAS  Google Scholar 

  • Doebeli M, Ispolatov I (2010) Complexity and diversity. Science 328:494–497

    Article  PubMed  CAS  Google Scholar 

  • Duckworth RA, Badyaev AV (2007) Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proc Natl Acad Sci USA 104:15017–15022

    Article  PubMed  CAS  Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of amphibians. McGraw-Hill, New York

    Google Scholar 

  • Dytham C (2009) Evolved dispersal strategies at range margins. P R Soc B 276:1407–1413

    Article  Google Scholar 

  • Endler JA (1977) Geographic variation, speciation and clines. Princeton University Press, Princeton

    Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton

    Google Scholar 

  • Finos L, Brombin C, Salmaso L (2010) Adjusting stepwise p-values in generalized linear models. Communications in Statistics-Theory and Methods 39:1832–1846

    Article  Google Scholar 

  • Fraser DF, Gilliam JF, Daley MJ, Le AN, Skalski GT (2001) Explaining leptokurtic movement distributions: intrapopulation variation in boldness and exploration. Am Nat 158:124–135

    Article  PubMed  CAS  Google Scholar 

  • Freeman S, Herron JC (2001) Evolutionary analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Friedenberg NA (2003) Experimental evolution of dispersal in spatiotemporally variable microcosms. Ecol Lett 6:953–959

    Article  Google Scholar 

  • Fryxell JM, Hazell M, Borger L et al (2008) Multiple movement modes by large herbivores at multiple spatiotemporal scales. Proc Natl Acad Sci USA 105:19114–19119

    Article  PubMed  CAS  Google Scholar 

  • Futuyma DJ (2005) Evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Gallant N, Teather K (2001) Differences in size, pigmentation, and fluctuating asymmetry in stressed and nonstressed northern leopard frogs (Rana pipiens). Ecoscience 8:430–436

    Google Scholar 

  • Gillis GB (1996) Undulatory locomotion in elongate aquatic vertebrates: anguilliform swimming since Sir James Gray. Am Zool 36:656–665

    Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815

    Article  Google Scholar 

  • Grant EHC (2008) Visual implant elastomer mark retention through metamorphosis in amphibian larvae. J Wildl Manag 72:1247–1252

    Article  Google Scholar 

  • Grant EHC, Nichols JD, Lowe WH, Fagan WF (2010) Use of multiple dispersal pathways facilitates amphibian persistence in stream networks. Proc Natl Acad Sci USA 107:6936–6940

    Article  CAS  Google Scholar 

  • Gray J (1968) Animal locomotion. W.W. Norton and Co., New York

    Google Scholar 

  • Green AJ (2001) Mass/length residuals: measures of body condition or generators of spurious results? Ecology 82:1473–1483

    Article  Google Scholar 

  • Greene BT, Lowe WH, Likens GE (2008) Forest succession and prey availability influence the strength and scale of terrestrial-aquatic linkages in a headwater salamander system. Freshw Biol 53:2234–2243

    Google Scholar 

  • Harrison RG (1980) Dispersal polymorphisms in insects. Annu Rev Ecol Syst 11:95–118

    Article  Google Scholar 

  • Hastings A (1977) Spatial heterogeneity and the stability of predator-prey systems. Theor Popul Biol 12:37–48

    Article  PubMed  CAS  Google Scholar 

  • Heyer WR, Donnelly MA, McDiarmid RW, Hayek LC, Foster MS (1994) Measuring and monitoring biodiversity: standard methods for amphibians. Smithsonian Institution Press, Washington

    Google Scholar 

  • Higgins SI, Richardson DM (1999) Predicting plant migration rates in a changing world: the role of long-distance dispersal. Am Nat 153:464–475

    Article  Google Scholar 

  • Ims RA, Hjermann DO (2001) Condition-dependent dispersal. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, Oxford, pp 203–216

    Google Scholar 

  • Johnson ML, Gaines MS (1990) Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Annu Rev Ecol Syst 21:449–480

    Article  Google Scholar 

  • Johnson CA, Fryxell JM, Thompson ID, Baker JA (2009) Mortality risk increases with natal dispersal distance in American martens. Proc R Soc B 276:3361–3367

    Article  PubMed  Google Scholar 

  • Jungers WL, Falsetti AB, Wall CE (1995) Shape, relative size, and size-adjustments in morphometrics. Yearb Phys Anthropol 38:137–161

    Article  Google Scholar 

  • Kimura M (1955) Stochastic processes and distribution of gene frequencies under natural selection. Cold Spring Harbor Symp Quant Biol 20:33–53

    PubMed  CAS  Google Scholar 

  • Kleinbaum DG, Kupper LL, Muller KE, Nizam A (1998) Applied regression analysis and other multivariate models. Duxbury Press, Pacific Grove

    Google Scholar 

  • Koenig WD (1999) Spatial autocorrelation of ecological phenomena. Trends Ecol Evol 14:22–26

    Article  PubMed  Google Scholar 

  • Koenig WD, VanVuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517

    Article  PubMed  CAS  Google Scholar 

  • Levin SA, Muller-Landau HC, Nathan R, Chave J (2003) The ecology and evolution of seed dispersal: a theoretical perspective. Annu Rev Ecol Evol Syst 34:575–604

    Article  Google Scholar 

  • Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York

    Google Scholar 

  • Likens GE, Bormann FH (1995) Biogeochemistry of a forested ecosystem. Springer, New York

    Book  Google Scholar 

  • Lowe WH (2003) Linking dispersal to local population dynamics: a case study using a headwater salamander system. Ecology 84:2145–2154

    Article  Google Scholar 

  • Lowe WH (2009) What drives long-distance dispersal? A test of theoretical predictions. Ecology 90:1456–1462

    Article  PubMed  Google Scholar 

  • Lowe WH (2010) Explaining long-distance dispersal: effects of dispersal distance on survival and growth in a stream salamander. Ecology 91:3008–3015

    Article  PubMed  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    Article  PubMed  Google Scholar 

  • Lowe WH, Nislow KH, Bolger DT (2004) Stage-specific and interactive effects of sedimentation and trout on a headwater stream salamander. Ecol Appl 14:164–172

    Article  Google Scholar 

  • Lowe WH, Likens GE, Cosentino BJ (2006) Self-organisation in streams: the relationship between movement behaviour and body condition in a headwater salamander. Freshw Biol 51:2052–2062

    Article  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • Morales JM (2002) Behavior at habitat boundaries can produce leptokurtic movement distributions. Am Nat 160:531–538

    Article  PubMed  Google Scholar 

  • Morales JM, Haydon DT, Frair J, Holsiner KE, Fryxell JM (2004) Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85:2436–2445

    Article  Google Scholar 

  • Morris DW (1992) Scales and costs of habitat selection in heterogeneous landscapes. Evol Ecol 6:412–432

    Article  Google Scholar 

  • Nathan R (2001) The challenges of studying dispersal. Trends Ecol Evol 16:481–483

    Article  CAS  Google Scholar 

  • Nathan R (2005) Long-distance dispersal research: building a network of yellow brick roads. Divers Distrib 11:125–130

    Article  Google Scholar 

  • Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788

    Article  PubMed  CAS  Google Scholar 

  • Noble GK (1954) The biology of the Amphibia. Dover Publications, New York

    Google Scholar 

  • Orzack SH, Sober E (2001) Adaptationism and optimality. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington

    Google Scholar 

  • Petrovskii S, Morozov A (2009) Dispersal in a statistically structured population: fat tails revisited. Am Nat 173:278–289

    Article  PubMed  Google Scholar 

  • Phillips BL, Brown GP, Webb JK, Shine R (2006) Invasion and the evolution of speed in toads. Nature 439:803

    Article  PubMed  CAS  Google Scholar 

  • Pollock KH (2002) The use of auxiliary variables in capture-recapture modelling: an overview. J Appl Stat 29:85–102

    Article  Google Scholar 

  • Pollock KH, Nichols JD, Simons TR et al (2002) Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13:105–119

    Article  Google Scholar 

  • Pulliam HR, Danielson BJ (1991) Sources, sinks, and habitat selection: a landscape perspective on population dynamics. Am Nat 137:S50–S66

    Article  Google Scholar 

  • Roff DA (2002) Life history evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253

    Article  Google Scholar 

  • Rose MR, Lauder GV (1996) Adaptation. Academic Press, San Diego

    Google Scholar 

  • Rousset F, Gandon S (2002) Evolution of the distribution of dispersal distance under distance-dependent cost of dispersal. J Evol Biol 15:515–523

    Article  Google Scholar 

  • Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl Manag 72:260–267

    Article  Google Scholar 

  • Shine R, Brown GP, Phillips BL (2011) An evolutionary process that assembles phenotypes through space rather than through time. Proc Natl Acad Sci USA 108:5708–5711

    Article  PubMed  CAS  Google Scholar 

  • Simmons AD, Thomas CD (2004) Changes in dispersal during species’ range expansions. Am Nat 164:378–395

    Article  PubMed  Google Scholar 

  • Skalski GT, Gilliam JF (2003) A diffusion-based theory of organism dispersal in heterogeneous populations. Am Nat 161:441–458

    Article  PubMed  Google Scholar 

  • Sorensen AE (1978) Somatic polymorphism and seed dispersal. Nature 276:174–176

    Article  Google Scholar 

  • St-Amour V, Garner TWJ, Schulte-Hostedde AI, Lesbarreres D (2010) Effects of two amphibian pathogens on the developmental stability of green frogs. Conserv Biol 24:788–794

    Article  PubMed  Google Scholar 

  • Stamps JA, Krishnan VV, Reid ML (2005) Search costs and habitat selection by dispersers. Ecology 86:510–518

    Article  Google Scholar 

  • Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci USA 98:1095–1100

    Article  PubMed  CAS  Google Scholar 

  • Taylor TB, Buckling A (2010) Competition and dispersal in Pseudomonas aeruginosa. Am Nat 176:83–89

    Article  PubMed  Google Scholar 

  • Tittler R, Fahrig L, Villard MA (2006) Evidence of large-scale source-sink dynamics and long-distance dispersal among wood thrush populations. Ecology 87:3029–3036

    Article  PubMed  Google Scholar 

  • Triantafyllou MS, Triantafyllou GS, Yue DKP (2000) Hydrodynamics of fishlike swimming. Ann Rev Fluid Mech 32:33–53

    Article  Google Scholar 

  • Tufto J, Engen S, Hindar K (1997) Stochastic dispersal processes in plant populations. Theor Popul Biol 52:16–26

    Article  PubMed  Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement. Sinauer Associates, Sunderland

    Google Scholar 

  • Van Houtan KS, Pimm SL, Halley JM, Bierregaard RO, Lovejoy TE (2007) Dispersal of Amazonian birds in continuous and fragmented forest. Ecol Lett 10:219–229

    Article  PubMed  Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:120–139

    Article  Google Scholar 

  • Wright S (1951) The genetical structure of natural populations. Ann Eugen 15:323–354

    Article  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Sweet Water Trust, the National Science Foundation (DEB-0105091 and DEB-0714782), and the Andrew W. Mellon Foundation. We are grateful for support from L. Turner, K. Evans, L. Greene, C. Shannon, C. Glastris, A. Margolis, B. Fisher, J. Tollefson, W. Lowe, and I. Lowe. This manuscript was improved with comments from B. Addis, M. Wilson, and B. Hossack.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winsor H. Lowe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowe, W.H., McPeek, M.A. Can natural selection maintain long-distance dispersal? Insight from a stream salamander system. Evol Ecol 26, 11–24 (2012). https://doi.org/10.1007/s10682-011-9500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-011-9500-z

Keywords

Navigation