Skip to main content

Advertisement

Log in

Thermal energy and the rate of genetic evolution in marine fishes

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Slower genetic evolution in microbial thermophiles has been attributed to internal mutation control mechanisms in very high temperatures, whereas the tempo of plant microevolution has been positively correlated to ambient thermal conditions. Here, using a global dataset of 136 teleost fish species, contrasting warm and cool water species, and controlling for any differences between species in mutation control mechanisms, we found mitochondrial genetic evolution was 1.61 times faster in warm water species. These results suggest that temperature-mediated reduction in mutation rate is only important in extreme thermal regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adelman R, Saul RL, Ames BN (1988) Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Nat Acad Sci USA 85:2706–2708

    Article  CAS  PubMed  Google Scholar 

  • Allen A, Gillooly J, Savage V, Brown J (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proc Nat Acad Sci USA 103:9130–9135

    Article  CAS  PubMed  Google Scholar 

  • Bromham L (2002) Molecular clocks in reptiles: life history influences rate of molecular evolution. Mol Biol Evol 19:302–309

    CAS  PubMed  Google Scholar 

  • Collins MA, Bailey DM, Ruxton GD, Priede IG (2005) Trends in body size across an environmental gradient: a differential response in scavenging and non-scavenging demersal deep-sea fish. Proc Royal Soc B 272:2051–2057

    Article  CAS  Google Scholar 

  • Davies T, Savolainen V, Chase M, Moat J, Barraclough T (2004) Environmental energy and evolutionary rates in flowering plants. Proc Royal Soc Lond B 271:2195–2200

    Article  Google Scholar 

  • Drake JW (2009) Avoiding dangerous missense: thermophiles display especially low mutation rates. PLOS Genet 5:1–6

    Article  Google Scholar 

  • Drummond A, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2009) Geneious v4.7. Available from http://www.geneious.com/

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Gillespie JH (2000) Genetic drift in an infinite population: the pseudohitchhiking model. Genetics 155:909–919

    CAS  PubMed  Google Scholar 

  • Gillman LN, Ross HA, Keeling JD, Wright SD (2009) Latitude, elevation and the tempo of molecular evolution in mammals. Proc Royal Soc B 276:3353–3359

    Article  Google Scholar 

  • Gillman LN, Keeling DJ, Gardner RC, Wright SD (2010) Faster evolution of highly conserved DNA in tropical plants. J Evol Biol 23:1327–1330

    Article  CAS  PubMed  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  CAS  PubMed  Google Scholar 

  • Gillooly JF, Allen AP, West GB, Brown JH (2005) The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proc Nat Acad Sci USA 102:140–145

    Article  CAS  PubMed  Google Scholar 

  • Lanfear R, Thomas JA, Welch JJ, Brey T, Bromham L (2007) Metabolic rate does not calibrate the molecular clock. Proc Nat Acad Sci USA 104:15388–15393

    Article  CAS  PubMed  Google Scholar 

  • Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Nat Acad Sci USA 90:4087–4091

    Article  CAS  PubMed  Google Scholar 

  • Moranta J, Palmer M, Massuti E, Stefanescu C, Morales-Nin B (2004) Body fish size tendencies within and among species in the deep-sea of the western Mediterranean. Scientia Marina 68:141–152

    Article  Google Scholar 

  • Ohta T (1992) The nearly neutral theory of molecular evolution. Ann Rev Ecol Syst 23:263–286

    Article  Google Scholar 

  • Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514–527

    Article  Google Scholar 

  • Sarich VM, Wilson AC (1967) Immunological time scale for hominid evolution. Science 158:1200–1203

    Article  CAS  PubMed  Google Scholar 

  • Swami M (2009) Turning up the heat. Nat Rev Genet 10:512–513

    Article  CAS  Google Scholar 

  • Swofford D (2002) PAUP*: phylogenetic analysis using parsimony (and other methods) 4.0 beta. Sinauer Associates: CD-ROM, Sunderland, MA

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Woolfit M, Bromham L (2005) Population size and molecular evolution on islands. Proc Royal Soc Lond B 272:2277–2282

    Article  CAS  Google Scholar 

  • Wright S, Keeling J, Gillman L (2006) The road from Santa Rosalia: a faster tempo of evolution in tropical climates. Proc Nat Acad Sci USA 103:7718–7722

    Article  CAS  PubMed  Google Scholar 

  • Wright SD, Gillman LN, Ross HA, Keeling DJ (in press) Energy and the tempo of evolution in amphibians. Global Ecol Biogeogr

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was funded by Nga Pae O Te Maramatanga, Maori Centre of Research Excellence, under the direction of Michael Walker and Linda Smith. S. W. holds the Michael Horton Lectureship in Biogeography at the University of Auckland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane D. Wright.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 169 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, S.D., Ross, H.A., Jeanette Keeling, D. et al. Thermal energy and the rate of genetic evolution in marine fishes. Evol Ecol 25, 525–530 (2011). https://doi.org/10.1007/s10682-010-9416-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-010-9416-z

Keywords

Navigation