Skip to main content
Log in

Mapping a major gene for red skin color suppression (highlighter) in peach

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Presence, absence and intensity of red skin color in peach fruit are key characters for breeding varieties adapted to different market niches and consumer preferences. Red skin color is the result of anthocyanins, and in some progenies, the suppression of red skin color has been found to be controlled by a single gene, H/h, where plants homozygous for the recessive allele (h) produce the highlighter (anthocyaninless) phenotype. In this paper we analyzed an F2 population of 276 individuals segregating for this trait and mapped the H gene on a 5 cM region of linkage group 3. This region was saturated with additional markers and finally H was located in a genomic region of ~607 kbp containing 62 genes. Three of these genes corresponded to MYB10 transcription factors, known to control anthocyan biosynthetic pathways in peach and other species, such as cherry and apple. A codominant marker based on the sequence of one of these genes (PpMYB10.1) was used to genotype the F2 progeny and cosegregated with the trait. To further validate the marker it was tested in a collection of 87 peach cultivars. A strong association was found between the marker genotype and the intensity of red blush, with the three cultivars that have a complete absence of red blush being homozygous for the marker allele associated with the highlighter trait, confirming that it could be used as an efficient, although not diagnostic, marker to select this character in peach breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aranzana MJ, Carbó J, Arús P (2003) Microsatellite variability in peach [Prunus persica (L.) Batsch.]: cultivar identification, marker mutation, pedigree inferences and population structure. Theor Appl Genet 106:1341–1352

    Article  CAS  PubMed  Google Scholar 

  • Beckman TG, Sherman WB (2003) Probable qualitative inheritance of full red skin color in peach. HortScience 38:1184–1185

    Google Scholar 

  • Beckman TG, Rodriguez Alcazar J, Sherman WB, Werner DJ (2005) Evidence for qualitative supression of red skin color in peach. HortScience 40(3):523–524

    Google Scholar 

  • Brandi F, Bar E, Mourgues F, Horváth G, Turcsi E, Giuliano G, Liverani A, Tartarini S, Lewinsohn E, Rosati C (2011) Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biol 11:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantín CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J, Moreno MA, Gogorcena Y (2010) Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biol Technol 58:79–87

    Article  Google Scholar 

  • Crisosto CH, Costa G (2008) Preharvest factors affecting peach quality. In: Layne DR, Bassi D (eds) The peach: botany production and uses. CAB International, Cambridge, pp 536–549

    Chapter  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donoso JM, Eduardo I, Picañol R, Batlle I, Howad W, Aranzana MJ, Arús P (2015) High-density mapping 493 suggests cytoplasmic male sterility with two restorer genes in almond × peach progenies. Hortic Res 2:15016

    Article  PubMed  PubMed Central  Google Scholar 

  • Donoso JM, Picañol R, Serra O, Howad W, Alegre S, Arús P, Eduardo I (2016) Exploring almond genetic variability useful for peach improvement: mapping major genes and QTLs in two inter-specific almond × peach populations. Mol Breed 36:16

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335

    Article  Google Scholar 

  • Eduardo I, López-Girona E, BatlIe I, Reig G, Iglesias I, Howad W, Arús P, Aranzana MJ (2014) Development of diagnostic markers for selection of the subacid trait in peach. Tree Genet Genomes 10:1695–1709

    Article  Google Scholar 

  • Eduardo I, Cantín CM, Batlle I, Arús P (2015a) Integración de los marcadores moleculares en un programa de mejora de variedades de melocotonero. Fruticultura 44:6–17

    Google Scholar 

  • Eduardo I, Picañol R, Rojas E, Batlle I, Howad W, Aranzana MJ, Arús P (2015b) Mapping of a major gene for the slow ripening character in peach: co-location with the maturity date gene and development of a candidate gene-based diagnostic marker for its selection. Euphytica 205:627–636

    Article  CAS  Google Scholar 

  • Espley RV, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten HJ, Gardiner SE, Hellens RP, Allan AC (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falchi R, Vendramin E, Zanon L, Scalabrin S, Cipriani G, Verde I, Vizzotto G, Morgante M (2013) Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach. Plant J 76(2):175–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frett TJ, Reighard GL, Okie WR, Gasic K (2014) Mapping quantitative trait loci associated with blush in peach 510 [Prunus persica (L.) Batsch]. Tree Genet Genomes 10:367–381

    Article  Google Scholar 

  • Gradziel TM, Beres W, Pelletreau K (1993) Inbreeding in California canning clingstone peach cultivars. Fruit Var J 47:160–168

    Google Scholar 

  • Iglesias I, Echeverría G (2009) Differential effect of cultivar and harvest date on nectarine color, quality and consumer acceptance. Sci Hortic 120:41–50

    Article  Google Scholar 

  • Iglesias I, Ruiz S (2016) Evolución de la producción y superficie de melocotón en España. Vida Rural 407:28–34

    Google Scholar 

  • Illa E, Sargent DJ, Lopez Girona E, Bushakra J, Cestaro A, Crowhurst R, Pindo M, Cabrera A, van der Knaap E, Iezzoni A, Gardiner S, Velasco R, Arús P, Chagné D, Troggio M (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung S, Cestaro A, Troggio M, Main D, Zheng P, Cho I, Folta KM, Sosinski B, Abbott A, Celton JM, Arús P, Shulaev V, Verde I, Morgante M, Rokhsar DR, Velasco R, Sargent DJ (2012) Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies. BMC Genomics 13:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Layne DR, Jiang ZW, Rushing JW (2001) Tree fruit reflective film improves red skin coloration and advances maturity in peach. Hortic Technol 11:234–242

    Google Scholar 

  • Liverani A, Giovannini D, Brandi F (2002) Increasing fruit quality of peaches and nectarines: the main goals of ISF-FO (Italy). Acta Hortic 592:507–514

    Article  Google Scholar 

  • Nicotra A, Conte L, Moser L, Fantechi P (2002) New types of high quality peaches: flat peaches (P. persica var. Platicarpa) and Ghiaccio peach series with long on tree fruit life. Acta Hortic 592:131–135

    Article  Google Scholar 

  • Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breed 16:21–31

    Article  CAS  Google Scholar 

  • Picañol R, Eduardo I, Aranzana MJ, Howad W, Batlle I, Iglesias I, Alonso JM, Arús (2013) Combining linkage and association mapping to search for markers linked to the flat fruit character in peach. Euphytica 190:279–288

    Article  Google Scholar 

  • Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897

    Article  CAS  PubMed  Google Scholar 

  • Rahim MA, Busatto N, Trainotti L (2014) Regulation of anthocyanin biosynthesis in peach fruits. Planta 240:913–929

    Article  CAS  PubMed  Google Scholar 

  • Reig G (2013) Selección de nuevas variedades de melocotón [Prunus persica (L.) Batsch] en función de caracteres agronómicos, morfológicos, de calidad y de conservación del fruto. PhD Dissertation, Universitat de Lleida

  • Reig G, Iglesias I, Gatius F, Alegre S (2013) Antioxidant capacity, quality, and anthocyanin and nutrient contents of several peach cultivars [Prunus persica (L.) Batsch] grown in Spain. J Agric Food Chem 61:6344–6357

    Article  CAS  PubMed  Google Scholar 

  • Ru S, Main D, Evans K, Peace C (2015) Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genet Genomes 11(1):834

    Article  Google Scholar 

  • Scorza R, Sherman WB (1996) Peaches. In: Janick J, Moore JN (eds) Fruit breeding, vol I., Tree and tropical fruits Wiley, New York, pp 325–440

    Google Scholar 

  • Sooriyapathirana SS, Khan A, Sebolt AM, Wang D, Bushakra JM, Lin-Wang K, Allan AC, Gardiner SE, Chagné D, Iezzoni AF (2010) QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet Genomes 6:821–832

    Article  Google Scholar 

  • Tuan PA, Bai S, Yaegaki H, Tamura T, Hihara S, Moriguchi T, Oda K (2015) The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol 15:280

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93(5):343–349

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach SSR, STS, AFLP and RAPD. J Jpn Soc Hortic Sci 74:204–213

    Article  CAS  Google Scholar 

  • Zhang Y, Butelli E, Martin C (2014) Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol 19:81–90

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhou H, Lin-Wang K, Vilongmangkang S, Espley RV, Wang L, Allan AC, Han Y (2014) Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red coloration in peach. BMC Plant Biol 14:388

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa Programme for Centres of Excellence in R&D” 2016–2019 (SEV‐2015‐0533) and Project AGL2012-40228, and from the CERCA Programme-Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Eduardo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bretó, M.P., Cantín, C.M., Iglesias, I. et al. Mapping a major gene for red skin color suppression (highlighter) in peach. Euphytica 213, 14 (2017). https://doi.org/10.1007/s10681-016-1812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-016-1812-1

Keywords

Navigation