Skip to main content

Advertisement

Log in

Evaluation of a M-202 × Oryza nivara advanced backcross mapping population for seedling vigor, yield components and quality

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Oryza nivara, the ancestral species of cultivated rice (O. sativa), has been the source of novel alleles for resistance to biotic and abiotic stress lost during domestication. Interspecific advanced backcross (ABC) populations permit the introgression of desirable alleles from the wild species into O. sativa and allow traits to be mapped to chromosomal regions by QTL mapping. An ABC population was developed by crossing M-202, a California medium grain, temperate japonica cultivar with O. nivara (IRGC100195). The population has 177 BC2F2:5 progeny lines and was evaluated for 17 traits including seedling vigor under cool temperature (mesocotyl, coleoptile, shoot and root lengths), agronomic (days to heading, plant height, culm angle, panicle type), yield components (panicles per plant, panicle length, florets and seeds per panicle, 100-seed weight) and quality [kernel length and width, apparent amylose content (AAC), alkali spreading value (ASV)]. Most exciting was that the O. nivara parent improved seedling vigor by increasing both the coleoptile and shoot lengths. Wild donor alleles increased the panicles per plant and seed weight, but M-202 alleles improved fertility. For one locus, the O. nivara alleles accounted for increased kernel length even though this parent had smaller seeds than M-202. The AAC mapped to the WAXY locus and ASV to the ALK locus, with most progeny being similar to M-202 for these quality traits. Select progeny lines could be useful for improving seedling vigor. This interspecific population is the first in the background of a U.S. temperate japonica rice cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ali ML, Sanchez PL, Yu S, Lorieux M, Eizenga GC (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa). Rice 3:218–234

    Article  Google Scholar 

  • Ali ML, McClung AM, Jia MH, Kimball JA, McCouch SR, Eizenga GC (2011) A rice diversity panel evaluated for genetic and agro-morphological diversity between subpopulations and its geographic distribution. Crop Sci 51:2021–2035

    Article  Google Scholar 

  • Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard JH (2004) QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O. glaberrima. Theor Appl Genet 109:630–639

    Article  CAS  PubMed  Google Scholar 

  • Ayres NM, McClung AM, Larkin PD, Bligh HFJ, Jones CA, Park WD (1997) Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm. Theor Appl Genet 94:773–781

    Article  CAS  Google Scholar 

  • Bergman CJ, Bhattacharya KR, Ohtsubo K (2004) Rice end-use quality analysis. In: Champagne ET (ed) Rice chemistry and technology. American Association of Cereal Chemists, St. Paul, pp 415–772

    Chapter  Google Scholar 

  • Bian J, Li C, He H, Shi H, Yan S (2014) Identification and analysis of QTLs for grain quality traits in rice using an introgression lines population. Euphytica 195:83–93

    Article  Google Scholar 

  • Brar DS, Singh K (2011) Oryza. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 321–365

    Chapter  Google Scholar 

  • Brondani C, Rangel PHN, Brondani RPV, Ferreira ME (2002) QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet 104:1192–1203

    Article  CAS  PubMed  Google Scholar 

  • Cai HW, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet 104:1217–1228

    Article  CAS  PubMed  Google Scholar 

  • Chang TT, Bardenas EA (1965) The morphology and varietal characteristics of the rice plant. Tech Bull 4. Int Rice Res Inst, Los Baños, Philippines

  • Chapman AL, Peterson ML (1962) The seedling establishment of rice under water in relation to temperature and dissolved oxygen. Crop Sci 2:391–395

    Article  CAS  Google Scholar 

  • Chen M-H, Fjellstrom RG, Christensen EF, Bergman CJ (2010) Development of three allele-specific codominant rice Waxy gene PCR markers suitable for marker-assisted selection of amylose content and paste viscosity. Mol Breed 26:513–523

    Article  CAS  Google Scholar 

  • Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693

    Article  CAS  PubMed  Google Scholar 

  • Cui KH, Peng SB, Xing YZ, Xu CG, Yu SB, Zhang Q (2002) Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor Appl Genet 105:745–753

    Article  CAS  PubMed  Google Scholar 

  • Eizenga GC, Prasad B, Jackson AK, Jia MH (2013) Identification of rice sheath blight and blast quantitative trait loci in two different O. sativa/O. nivara advanced backcross populations. Mol Breed 31:889–907

    Article  Google Scholar 

  • Eizenga GC, Ali ML, Bryant RJ, Yeater KM, McClung AM, McCouch SR (2014) Registration of the Rice Diversity Panel 1 for genome-wide association studies. J Plant Regist 8:109–116

    Article  Google Scholar 

  • Fjellstrom RG, Conaway-Bormans CA, McClung AM, Marchetti MA, Shank AR, Park WD (2004) Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci 44:1790–1798

    Article  CAS  Google Scholar 

  • Fjellstrom RG, McClung AM, Shank AR (2006) SSR markers closely linked to the Pi-z locus are useful for selection of blast resistance in a broad array of rice germplasm. Mol Breed 17:149–157

    Article  CAS  Google Scholar 

  • Fu A, Zhang P, Tan L, Zhu A, Ma D, Fu Y, Zhan X, Cai H, Sun C (2010) Analysis of QTLs for yield related traits in Yuanjing common wild rice (Oryza rufipogon Griff.). J Genet Genom 37:147–157

    Article  CAS  Google Scholar 

  • Fuller DQ, Sato YI, Castillo C, Qin L, Weisskopf AR, Kingwell-Banham EJ, Song J, Ahn SM, van Etten J (2010) Consilience of genetics and archaeobotany in the entangled history of rice. Archaeol Anthropol Sci. 2:115–131

    Article  Google Scholar 

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501

    Article  CAS  PubMed  Google Scholar 

  • Imai I, Kimball JA, Conway B, Yeater KM, McCouch SR, McClung AM (2013) Validation of yield-enhancing quantitative trait loci from a low-yielding wild ancestor of rice. Mol Breed 32:101–120

    Article  CAS  Google Scholar 

  • Iwata N, Shinada H, Kiuchi H, Sato T, Fujino K (2010) Mapping of QTLs controlling seedling establishment using a direct seeding method in rice. Breed Sci 60:353–360

    Article  Google Scholar 

  • Jacquemin J, Bhatia D, Singh K, Wing RA (2013) The International Oryza Map Alignment Project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr Opin Plant Biol 16:1–10

    Article  Google Scholar 

  • Jia Y, Redus M, Wang Z, Rutger JN (2004) Development of a SNLP marker from the Pi-ta blast resistance gene by tri-primer PCR. Euphytica 138:97–105

    Article  CAS  Google Scholar 

  • Jing Z, Qu Y, Chen Y, Pan D, Fan Z, Chen J, Li C (2010) QTL analysis of yield-related traits using an advanced backcross population derived from common wild rice (Oryza rufipogon L.). Mol Plant Breed 1:1–10. doi:10.5376/mpb.2010.01.0001

    Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 23:2788–2789

    Article  Google Scholar 

  • Johnson CW, Carnahan HL, Tseng ST, Oster JJ, Hill JE (1986) Registration of M-202 rice. Crop Sci 26:198

    Article  Google Scholar 

  • Jones DB, Peterson ML (1976) Rice seedling vigor at sub-optimal temperatures. Crop Sci 16:102–105

    Article  Google Scholar 

  • Juliano BO (1985) Criteria and tests for rice grain qualities. In: Juliano BO (ed) Rice chemistry and technology, 2nd edn. American Association of Cereal Chemists, St. Paul, pp 443–524

    Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Larkin P, Park W (2003) Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice (Oryza sativa L.). Mol Breed 12:335–339

    Article  CAS  Google Scholar 

  • Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1255–1269

    Google Scholar 

  • Maas LF, McClung A, McCouch S (2010) Dissection of a QTL reveals an adaptive, interacting gene complex associated with transgressive variation for flowering time in rice. Theor Appl Genet 120:895–908

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Sweeney M, Li J, Jiang H, Thomson M, Septiningsih E, Edwards J, Moncada P, Xiao J, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yuan LP, Ahn SN (2007) Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154:317–339

    Article  CAS  Google Scholar 

  • McKenzie KS, Johnson CW, Tseng ST, Oster JJ, Brandon DM (1994) Breeding improved rice cultivars for temperate regions—a case study. Aust J Exp Agric 34:897–905

    Article  Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:229–235

    Article  Google Scholar 

  • Neves, PCF (2002) Introgression of agronomic traits associated with molecular markers from Oryza nivara Sharma & Shastry and O. glaberrima Steud. into O. sativa L. PhD dissertation, University of California, Davis

  • Ormrod DP, Bunter WA (1961) The evaluation of rice varieties for cold water tolerance. Agron J 53:133–134

    Article  Google Scholar 

  • Raney F (1963) Rice water temperature. Calif Agric 17:6–7

    Google Scholar 

  • Redoña ED, Mackill DJ (1996) Genetic variation for seedling vigor traits in rice. Crop Sci 36:285–290

    Article  Google Scholar 

  • SAS Institute (2008) The SAS system for Windows. Release 9.2. SAS Institute, Cary

    Google Scholar 

  • Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003a) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432

    Article  CAS  PubMed  Google Scholar 

  • Septiningsih EM, Trijatmiko KR, Moeljopawiro S, McCouch SR (2003b) Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1433–1441

    Article  CAS  PubMed  Google Scholar 

  • Shakiba E, Eizenga GC (2014) Unraveling the secrets of rice wild species. In: Yan WG, Bao J (eds) Rice – Germplasm, genetics and improvement. http://dx.doi.org/10.5772/58393. Accessed 30 July 2015

  • Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotech 27:141–150

    Article  CAS  Google Scholar 

  • Smith AM, Denyer K, Martin C (1997) The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol 48:67–87

    Article  CAS  PubMed  Google Scholar 

  • Swamy BPM, Kaladhar K, Shobhar Rani N, Prasad GSV, Viraktamath BC, Ashok Reddy G, Sarla N (2012) QTL analysis for grain quality traits in 2 BC2F2 populations derived from crosses between Oryza sativa cv Swarna and 2 accessions of O. nivara. J Hered 103:442–452

    Article  CAS  PubMed  Google Scholar 

  • Tai T, Tanksley SD (1990) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep 8:297–303

    Article  Google Scholar 

  • Tan L, Zang P, Liu F, Wang G, Ye S, Zhu Z, Fu Y, Cai H, Sun C (2008) Quantitative trait loci underlying domestication-and yield-related traits in an Oryza sativa x Oryza rufipogon advanced backcross population. Genome 51:692–704

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712

    Article  CAS  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    Article  CAS  PubMed  Google Scholar 

  • Tung C-W, Zhao K, Wright M, Ali ML, Jung J, Kimball J, Tyagi W, Thomson MJ, McNally K, Leung H, Kim HJ, Ahn SN, Reynolds A, Scheffler B, Eizenga G, McClung AM, Bustamante C, McCouch SR (2010) Development of a research platform for dissecting phenotype genotype associations in rice (Oryza spp.). Rice 3:205–217

    Article  Google Scholar 

  • Umemoto T, Aoki N (2005) Single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinization and starch association of the enzyme. Funct Plant Biol 32:763–768

    Article  CAS  Google Scholar 

  • Umemoto T, Aoki N, Lin H, Nakamura Y, Inouchi N, Sato Y, Yano M, Hirabayashi H, Maruyama S (2004) Natural variation in rice starch synthase IIa affects enzyme and starch properties. Funct Plant Biol 31:671–684

    Article  CAS  Google Scholar 

  • Van Berloo R (2008) GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered 99:232–236

    Article  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4. Software for genetic linkage maps in experimental populations. Kayazma, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li J (2008) Rice, rising. Nat Genet 40:1273–1275

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN (2008) Fine mapping of yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa x Oryza rufipogon cross. Theor Appl Genet 116:613–622

    Article  PubMed  Google Scholar 

  • Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52:891–898

    Article  CAS  PubMed  Google Scholar 

  • Yuan PR, Kim HJ, Chen QH, Ju HG, Lee SJ, Ji SD, Ahn S-N (2009) QTL dissection of agronomic and domestication traits using introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (O. sativa L.) background. J Crop Sci Biotech 2:245–252

    Article  Google Scholar 

  • Zhang ZH, Qu X-S, Wan S, Chen L-H, Zhu Y-G (2005a) Comparison of QTL controlling seedling vigour under different temperature conditions using recombinant inbred lines in rice (Oryza sativa). Ann Bot 95:423–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang ZH, Yu SB, Yu T, Huang Z, Zhu YG (2005b) Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.). Field Crops Res 91:161–170

    Article  Google Scholar 

  • Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Commun 2:467. doi:10.1038/ncomms1467

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA) to P.C.F. Neves is gratefully acknowledged, as well as the support of the University of California and USDA-ARS at Davis, California, for the research conducted at Davis. The studies conducted at Davis, California, were part of the Ph.D. dissertation research for P.C.F. Neves. Dr. Thomas H. Tai is acknowledged for sharing the seed with G.C. Eizenga. At the USDA-ARS DB NRRC in Stuttgart, Arkansas, the excellent technical assistance of Quynh P.-H. Grunden is acknowledged in all phases of the work. Both Melissa H. Jia and Aaron K. Jackson in the Genomics Core Facility are recognized for running markers, allele calling and assisting with creating the final linkage map. The support of the Arkansas Rice Research and Promotion Board through the University of Arkansas for H.A. Agrama is gratefully acknowledged. Lastly, the excellent review with suggestions for improving the manuscript by Dr. Shannon R. Pinson is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia C. Eizenga.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eizenga, G.C., Neves, P.C.F., Bryant, R.J. et al. Evaluation of a M-202 × Oryza nivara advanced backcross mapping population for seedling vigor, yield components and quality. Euphytica 208, 157–171 (2016). https://doi.org/10.1007/s10681-015-1613-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1613-y

Keywords

Navigation