Skip to main content
Log in

Association mapping for resistance to tan spot induced by Pyrenophora tritici-repentis race 1 in CIMMYTs historical bread wheat set

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Tan spot, a major foliar disease of wheat, is caused by an ascomycete Pyrenophora tritici-repentis (PTR). Association mapping on germplasm collection is a novel approach for the discovery and validation of major genes/QTLs for a trait. Linkage disequilibrium, the genetic basis of association mapping, can be an important tool to identify genomic regions associated with tan spot resistance. Association analysis utilizing the population structure and additive genetic covariance between relatives was conducted for tan spot resistance on a set of historical bread wheat germplasm comprising of 170 lines developed at CIMMYT, Mexico with the genotypic data generated with 1644 molecular markers. Tan spot resistance data was obtained by screening the germplasm with PTR race 1 isolate Ptr-1. Two weeks old seedlings were inoculated and rated 8 days later on a lesion type disease scale. Three experiments were conducted in the greenhouse with each experiment as arranged in completely randomized design with two replicates. Over half of the entries were resistant to tan spot induced by PTR race 1. The genome-wide scan revealed significant marker-phenotype associations on the short arm of chromosomes 1A, 1B, and 6B and long arm of chromosomes 4A, 6A1, 6A2, 2B, 3B, 5B, and 7B that play an important role in conferring resistance to tan spot. Although some genomic regions contributing to tan spot resistance have been previously identified; novel regions on long arm of chromosomes 6A1, 6A2, and 7B, were identified in this study. Findings of this study reveal that a high proportion of CIMMYT wheat germplasm is resistant to tan spot caused by PTR race 1 and genetic base of CIMMYT germplasm resistance involves race specific and non-race specific resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adhikari TB, Jackson EW, Gurung S, Hansen JM, Bonman JM (2011) Association mapping of quantitative resistance to Phaeosphaeria nodorum in spring wheat landraces from the USDA national small grains collection. Phytopathology 101:1301–1310

    Article  PubMed  Google Scholar 

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Ali S, Singh PK, McMullen MP, Mergoum M, Adhikari TB (2008) Resistance to multiple leaf spot diseases in wheat. Euphytica 159:167–179

    Article  Google Scholar 

  • Anderson JA, Effertz RJ, Faris JD, Francl LJ, Meinhardt SW, Gill BS (1999) Genetic analysis of sensitivity to a Pyrenophora tritici-repentis necrosis inducing toxin in durum and common wheat. Phytopathology 89:293–297

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57(1):289–300

    Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Brûlé-Babel AL, Lamari L (1992) Evaluation of field screening techniques for tan spot resistance in spring wheat. In: Francl LJ, Krupinsky JM, McMullen MP (eds), Proceedings of 2nd Int. Tan Spot Workshop. North Dakota State University, Fargo, Advances in tan spot research, pp 39–43

  • Chu CG, Friesen TL, Xu SS, Faris JD (2008) Identification of novel tan spot resistance loci beyond the known host-selective toxin insensitivity genes in wheat. Theor Appl Genet 117:873–881

    Article  PubMed  CAS  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Wolf ED, Effertz RJ, Ali S, Francl LJ (1998) Vistas of tan spot research. Can J Plant Pathol 20:349–370

    Article  Google Scholar 

  • Effertz RJ, Anderson JA, Francl LJ (2001) Restriction fragment length polymorphism mapping of resistance to two races of Pyrenophora tritici-repentis in adult and seedling wheat. Phytopathology 91:572–578

    Article  PubMed  CAS  Google Scholar 

  • Effertz RJ, Meinhardt SW, Anderson JA, Jordahl JG, Francl LJ (2002) Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology 92:527–533

    Article  PubMed  CAS  Google Scholar 

  • Emebiri LC, Oliver JR, Mrva K, Mares D (2010) Association mapping of late maturity amylase (LMA) activity in a collection of synthetic hexaploid wheat. Mol Breed 26:39–49

    Article  CAS  Google Scholar 

  • Evans CK, Hunger RM, Siegerist WC (1999) Comparison of greenhouse and field testing to identify wheat resistant to tan spot. Plant Dis 83:269–273

    Article  Google Scholar 

  • Faris JD, Friesen TL (2005) Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat. Theor Appl Genet 111:386–392

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1997) RFLP mapping of resistance to chlorosis induction by Pyrenophora tritici-repentis. Theor Appl Genet 94:98–103

    Article  PubMed  CAS  Google Scholar 

  • Fernandez MR, DePauw RM, Clarke JM, Fox SL (1998) Discoloration of wheat kernels by Pyrenophora tritici-repentis. Can J Plant Pathol 20:380–383

    Article  Google Scholar 

  • Friesen TL, Faris JD (2004) Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat. Theor Appl Genet 109:464–471

    Article  PubMed  CAS  Google Scholar 

  • Gilbert J, Woods SM (2001) Leaf spot diseases of spring wheat in southern Manitoba farm fields under conventional and conservation tillage. Can J Plant Sci 81:551–559

    Google Scholar 

  • Gilchrist SL (1992) Resistance to Pyrenophora tritici-repentis in CIMMYT bread wheat germplasm. In: Francl LJ, Krupinsky JM, McMullen MP (eds), Advances in tan spot research. Proceedings of the 2nd international tan spot workshop. North Dakota State University, Fargo, pp 44–49

  • Gupta PK, Kumar J, Mir RR, Kumar A (2009) Marker-assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145–217

    Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Jackson EW, del Rı´o LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123:1029–1041

    Article  PubMed  CAS  Google Scholar 

  • Lamari L, Bernier CC (1989) Evaluation of wheat reaction to tan spot (Pyrenophora tritici-repentis) based on lesion type. Can J Plant Pathol 11:49–56

    Article  Google Scholar 

  • Lillemo M, Joshi AK, Prasad R, Chand R, Singh RP (2013) QTL for spot blotch resistance in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theor Appl Genet 126:711–719

    Article  PubMed  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Mantovani P, Demontis A, Massi A, Ammar K, Kolmer JA, Czembor JH, Ezrati S, Tuberosa R (2010) Association mapping of leaf rust response in durum wheat. Mol Breed 26:189–228

    Article  CAS  Google Scholar 

  • McLaren CG, Bruskiewich RM, Portugal AM, Cosico AB (2005) The International Rice Information System. A platform for meta-analysis of rice crop data. Plant Physiol 139:637–642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miedaner T, Würschum T, Maurer HP, Korzun V, Ebmeyer E, Reif JC (2011) Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol Breed 28:647–655

    Article  Google Scholar 

  • Patel JS, Mamidi S, Bonman JM, Adhikari TB (2013) Identification of QTL in spring wheat associated with resistance to a novel isolate of Pyrenophora tritici-repentis. Crop Sci 53:842–852

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephen M, Donnely P (2000) Inference on population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ravel C, Praud S, Murigneux A, Linossier L, Dardevet M, Balfourier F, Dufour P, Brunel D, Charmet G (2006) Identification of Glu-B1-1 as a candidate gene for the quantity of high-molecular weight glutenin in bread wheat (Triticum aestivum L.) by means of an association study. Theor Appl Genet 112:738–743

    Article  PubMed  CAS  Google Scholar 

  • Rees RG, Platz GJ (1990) Sources of resistance to Pyrenophora tritici-repentis in bread wheats. Euphytica 45:59–69

    Google Scholar 

  • SAS Institute (1999) SAS/STAT user’s guide, releases 8.2, 8.1, 8.0. SAS Inst., Cary

  • Sawkins MC, Farmer AD, Hoisington D, Sullivan J, Tolopko A et al (2004) Comparative map and trait viewer (CMTV): an integrated bioinformatic tool to construct consensus maps and compare QTL and functional genomics data across genomes and experiments. Plant Mol Biol 56:465–480

    Article  PubMed  CAS  Google Scholar 

  • Shabeer A, Bockus WW (1988) Tan spot effects on yield and yield components relative to growth stage in winter wheat. Plant Dis 72:599–602

    Article  Google Scholar 

  • Singh PK, Gonzalez-Hernandez JL, Mergoum M, Ali S, Adhikari TB, Kianian SF, Elias EM, Hughes GR (2006) Identification and molecular mapping of a gene in tetraploid wheat conferring resistance to Pyrenophora tritici-repentis race 3. Phytopathology 96:885–889

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Mergoum M, Gonzalez-Hernandez JL, Ali S, Adhikari TB, Kianian SF, Elias EM, Hughes GR (2008a) Genetics and molecular mapping of resistance to necrosis inducing race 5 of Pyrenophora tritici-repentis in tetraploid wheat. Mol Breed 21:293–304

    Article  CAS  Google Scholar 

  • Singh S, Bockus WW, Sharma I, Bowden RL (2008b) A novel source of resistance in wheat to Pyrenophora tritici-repentis race 1. Plant Dis 92:91–95

    Article  Google Scholar 

  • Singh PK, Mergoum M, Adhikari TB, Shah T, Ghavami F, Kianian SF (2010a) Genetic and molecular analysis of tan spot of wheat resistance effective against Pyrenophora tritici-repentis races 2 and 5. Mol Breed 25:369–379

    Article  CAS  Google Scholar 

  • Singh PK, Singh RP, Duveiller E, Mergoum M, Adhikari TB, Elias EM (2010b) Genetics of wheat-Pyrenophora tritici-repentis interactions. Euphytica 171:1–13

    Article  Google Scholar 

  • Singh PK, Duveiller E, Singh RP (2011) Evaluation of CIMMYT germplasm for resistance to leaf spotting diseases of wheat. Czech J Genet Plant Breed 47:S102–S108

    Google Scholar 

  • Tadesse W, Hsam SLK, Zeller FJ (2006) Evaluation of common wheat cultivars for tan spot resistance and chromosomal location of a resistance gene in the cultivar ‘Salamouni’. Plant Breed 125:318–322

    Article  Google Scholar 

  • Tadesse W, Schmolke M, Hsam SLK, Mohler V, Wenzel G, Zeller FJ (2007) Molecular mapping of resistance genes for tan spot (Pyrenophora tritici-repentis race 1) in synthetic wheat lines. Theor Appl Genet 114:855–862

    Article  PubMed  CAS  Google Scholar 

  • Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B (2007) Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Genet 115:697–708

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support for this project from The Bill and Melinda Gates Foundation, USA and The Swedish International Development Agency, Sweden. We thank the Wheat Pathology Group, Global Wheat Program at CIMMYT-Mexico for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Crossa, J., Duveiller, E. et al. Association mapping for resistance to tan spot induced by Pyrenophora tritici-repentis race 1 in CIMMYTs historical bread wheat set. Euphytica 207, 515–525 (2016). https://doi.org/10.1007/s10681-015-1528-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1528-7

Keywords

Navigation