Skip to main content
Log in

Development of a novel codominant molecular marker for chili veinal mottle virus resistance in Capsicum annuum L.

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Chili veinal mottle virus (ChiVMV) is one of the most destructive pepper pathogens in Asia. Development of ChiVMV-resistant cultivars is necessary to control ChiVMV infection on pepper farms. However, sources of variation for ChiVMV resistance have not been identified and only a recessive resistance gene has been identified. We initially screened 30 pepper lines from several countries using inoculation tests to further examine inheritance of ChiVMV resistance, to establish a relevant breeding program, and to develop a new resistant line. Here, we report a new genetically dominant source of resistance to ChiVMV in pepper. Secondly, we found two amplified fragment length polymorphisms linked to dominant resistance and converted them into high-resolution melting markers, which were located on chromosome 6. Furthermore, we obtained a cleaved amplified polymorphic sequence marker that was closer to the ChiVMV resistance locus using comparative mapping. The newly discovered marker, related to a single dominant gene, will help researchers develop a new ChiVMV-resistant pepper cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Caranta C, Palloix A (1996) Both common and specific genetic factors are involved in polygenic resistance of pepper to several potyviruses. Theor Appl Genet 92:15–20

    Article  Google Scholar 

  • Caranta C, Palloix A, Gebre-Selassie K, Lefebvre V, Moury B, Daubèze AM (1996) A complementation of two genes originating from susceptible Capsicum annuum lines confers a new and complete resistance to pepper veinal mottle virus. Phytopathology 86(7):739–743

    Article  Google Scholar 

  • Caranta C, Thabuis A, Palloix A (1999) Development of a CAPS marker for the Pvr4 locus: a tool for pyramiding potyvirus resistance genes in pepper. Genome 42(6):1111–1116

    PubMed  CAS  Google Scholar 

  • Givry SD, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARTHAGENE: multi-population integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704

    Article  PubMed  Google Scholar 

  • Green SK, Kim JS (1994) Sources of resistance to viruses of pepper (Capsicum spp.): a catalog Asian Vegetable Research and Development Center. Tech Bull 20:72

    Google Scholar 

  • Grube RC, Blauth JR, Andredos MSA, Caranta C, Jahn MK (2000) Identification and comparative mapping of a dominant potyvirus resistance gene cluster in Capsicum. Theor Appl Genet 101:852–859

    Article  CAS  Google Scholar 

  • Guerini MN, Murphy JF (1999) Resistance of Capsicum annuum ‘Avelar’ to pepper mottle potyvirus and alleviation of this resistance by co-infection with cucumber mosaic cucumovirus are associated with virus movement. J Gen Virol 80:2785–2792

    PubMed  CAS  Google Scholar 

  • Hwang J, Li J, Liu WY, An SJ, Cho H, Her NH, Yeam I, Kim D, Kang BC (2009) Double mutations in eIF4E and eIFiso4E confer recessive resistance to Chilli veinal mottle virus in pepper. Mol Cells 27(3):329

    Article  PubMed  CAS  Google Scholar 

  • Jung Jk, Park SW, Liu WY, Kang BC (2010) Discovery of single nucleotide polymorphism in Capsicum and SNP markers for cultivar identification. Euphytica 175:91–107

    Article  CAS  Google Scholar 

  • Kang BC, Nahm SH, Huh JH, Yoo HS, Yu JW, Lee MH, Kim BD (2001) An interspecific (Capsicum annuum × C. chinense) F2 linkage map in pepper using RFLP and AFLP markers. Theor Appl Genet 102:531–539

    Article  CAS  Google Scholar 

  • Kang BC, Yeam I, Frantz JD, Murphy JF, Jahn MM (2005) The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J 42(3):392–405

    Article  PubMed  CAS  Google Scholar 

  • Kyle MM, Palloix A (1997) Proposed revision of nomenclature for potyvirus resistance genes in Capsicum. Euphytica 97(2):183–188

    Article  Google Scholar 

  • Lee HR, Cho MC, Kim HJ, Park SW, Kim BD (2008) Marker development for erect versus pendant-orientated fruit in Capsicum annuum L. Mol Cells 26(6):548–553

    PubMed  CAS  Google Scholar 

  • Lee HR, Bae IH, Park SW, Kim HJ, Min WK, Han JH, Kim KT, Kim BD (2009) Construction of an integrated pepper map using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC end sequences. Mol Cells 27(1):21–37

    Article  PubMed  CAS  Google Scholar 

  • Lee HR, Kim KT, Kim HJ, Han JH, Kim JH, Yeom SI, Kim HJ, Kang WH, Shi J, Park SW, Bae IH, Lee S, Cho J, Oh D, Kim BD (2011) QTL analysis of fruit length using rRAMP, WRKY, and AFLP markers in chili pepper. Hortic Environ Biotechnol 52(6):602–613

    Article  CAS  Google Scholar 

  • Lee HR, An HJ, Yang DC, Choi SH, Kim HJ, Rhee HG, Harn CH (2012) Development of a high resolution melting (HRM) marker linked to genic male sterility in Capsicum annuum L. Plant Breed 131(3):444–448

    Article  CAS  Google Scholar 

  • Minamiyama Y, Tsuro M, Hirai M (2006) An SSR-based linkage map of Capsicum annuum. Mol Breed 18:157–169

    Article  CAS  Google Scholar 

  • Moury B, Palloix A, Caranta C, Gognalons P, Souche S, Selassie KG, Marchoux G (2005) Serological, molecular, and pathotype diversity of Pepper veinal mottle virus and Chili veinal mottle virus. Phytopathology 95(3):227–232

    Article  PubMed  CAS  Google Scholar 

  • Murphy JF, Blauth JR, Livingstone KD, Lackney VK, Jahn MK (1998) Genetic mapping of the pvr1 locus in Capsicum spp. and evidence that distinct potyvirus resistance loci control responses that differ at the whole plant and cellular levels. Mol Plant Microbe Interact 11(10):943

    Article  CAS  Google Scholar 

  • Parrella G, Ruffel S, Moretti A, Morel C, Palloix A, Caranta C (2002) Recessive resistance genes against potyviruses are localized in colinear genomic regions of the tomato (Lycopersicon spp.) and pepper (Capsicum spp.) genomes. Theor Appl Genet 105(6–7):855–861. doi:10.1007/s00122-002-1005-2

    PubMed  CAS  Google Scholar 

  • Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (elF4E). Plant J 32(6):1067–1075. doi:10.1046/j.1365-313X.2002.01499.x

    Article  PubMed  CAS  Google Scholar 

  • Ruffel S, Gallois JL, Moury B, Robaglia C, Palloix A, Caranta C (2006) Simultaneous mutations in translation initiation factors elF4E and elF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J Gen Virol 87(7):2089–2098

    Article  PubMed  CAS  Google Scholar 

  • The Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nature Genet 43:1035–1039

    Article  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Truong HTH, Kim KT, Kim S, Chae Y, Park JH, Oh DG, Cho MC (2010) Comparative mapping of consensus SSR markers in an intraspecific F8 recombinant inbred line population in capsicum. Hortic Environ Biotechnol 51:193–206

    CAS  Google Scholar 

  • Voorrips RE (2002) MapChart, Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118(7):1279–1293

    Article  PubMed  CAS  Google Scholar 

  • Yeam I, Kang BC, Lindeman W, Frantz JD, Faber N, Jahn MM (2005) Allele-specific CAPS markers based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum. Theor Appl Genet 112(1):178–186. doi:10.1007/s00122-005-0120-2

    Article  PubMed  CAS  Google Scholar 

  • Yeam I, Cavatorta JR, Ripoll DR, Kang BC, Jahn MM (2007) Functional dissection of naturally occurring amino acid substitutions in eIF4E that confers recessive potyvirus resistance in plants. Plant Cell 19(9):2913–2928. doi:10.1105/tpc.107.050997

    Article  PubMed  CAS  Google Scholar 

  • Yi G, Lee JM, Lee S, Choi D, Kim BD (2006) Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor Appl Genet 114(1):113–130

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GKS, Li S, Liu B, Deng Y et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant from the Next-Generation BioGreen 21 Program (No. PJ009065012012), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee Hark Harn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HR., An, H.J., You, Y.G. et al. Development of a novel codominant molecular marker for chili veinal mottle virus resistance in Capsicum annuum L.. Euphytica 193, 197–205 (2013). https://doi.org/10.1007/s10681-013-0897-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-0897-z

Keywords

Navigation