Skip to main content
Log in

Development of gene-based markers from functional Arabidopsis thaliana genes involved in phosphorus homeostasis and mapping in Brassica napus

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Brassica napus is an important oilseed and fodder crop grown throughout the world. Although it is widely grown, little is known about the molecular basis of phosphorus (P) homeostasis for this species. In this research, a population of 124 recombinant inbred lines (RILs) (designated as BE-RIL) derived from a cross between P-inefficient cv. ‘B104-2’ and P-efficient cv. ‘Eyou Changjia’ was used to construct a genetic map of P homeostasis genes. A set of gene-based markers (GBMs) was developed from functional genes involved in Arabidopsis thaliana P homeostasis. In total, 46 GBMs corresponding to 26 genes, assigned to eight functional categories, were integrated into the BE-RIL map. A total of 243 simple sequence repeat (SSR) markers were developed from 171 bacterial artificial chromosome (BAC) end sequences and/or B. rapa seed BAC sequences. Of these SSR markers, 74 were added to the BE-RIL map. Based on the newly constructed genetic map, comparative genetic analysis between A. thaliana and B. napus was performed. A total of 90 conserved genomic blocks were aligned between A. thaliana pseudochromosomes and the BE-RIL linkage groups. According to physical positions on the Arabidopsis genome, 1223 orthologs of 356 genes involved in Arabidopsis P homeostasis were mapped onto syntenic blocks and insertion segments. This high-density genetic map will be useful for identifying quantitative trait loci (QTL) that control P homeostasis and putative candidate genes for the efficient use of P in B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

P:

Phosphorus

RIL:

Recombinant inbred line

GBM:

Gene-based marker

SSR:

Single sequence repeat

QTL:

Quantitative trait loci

Reference

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Anneloor LMA, Asbroek T, Olsen J, Housman D, Baas F, Stanton VJ (2001) Genetic variation in mRNA coding sequences of highly conserved genes. Physiol Genomics 5:113–118

    Google Scholar 

  • Bari R, Pant BD, Stitt M, Scheible W (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    Article  PubMed  CAS  Google Scholar 

  • Brunel D, Froger N, Pelletier G (1999) Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome 42:387–402

    PubMed  CAS  Google Scholar 

  • Cavell AC, Lydiate DJ, Parkin IA, Dean C, Trick M (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62–69

    PubMed  CAS  Google Scholar 

  • Chen ZH, Nimmo GA, Jenkins GI, Nimmo HG (2007) BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochem J 405:191–198

    PubMed  CAS  Google Scholar 

  • Cheng XM, Xu JS, Xia S, Gu JX, Yang Y, Fu J, Qian XJ, Zhang SC, Wu JS, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Devaiah BN, Karthikeyan AS, Raghothama KG (2007a) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143:1789–1801

    Article  PubMed  CAS  Google Scholar 

  • Devaiah BN, Nagarajna VK, Raghothama KG (2007b) Phosphate homeostasis and root development in Arabidopsis are synchronized by the zing finger transcription factor ZAT6. Plant Physiol 145:147–159

    Article  PubMed  CAS  Google Scholar 

  • Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG (2009) Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol Plant 2:43–58

    Article  PubMed  CAS  Google Scholar 

  • Ding GD, Yang M, Hu YF, Liao Y, Shi L, Xu FS, Meng JL (2010) Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies. Ann Bot (Lond) 105:1221–1234

    Article  CAS  Google Scholar 

  • Doerner P (2008) Phosphate starvation signaling: a threesome controls systemic Pi homeostasis. Curr Opin Plant Biol 11:536–540

    Article  PubMed  CAS  Google Scholar 

  • Duan K, Yi K, Dang L, Huang H, Wu W, Wu P (2008) Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. Plant J 54:965–975

    Article  PubMed  CAS  Google Scholar 

  • Duan HY, Shi L, Ye XS, Wang YH, Xu FS (2009) Identification of phosphorous efficient germplasm in oilseed rape. J Plant Nutr 32:1148–1163

    Article  CAS  Google Scholar 

  • Fang ZY, Shao C, Meng YJ, Wu P, Chen M (2009) Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci 176:170–180

    Article  CAS  Google Scholar 

  • Franco-Zorrilla JM, Gonza′lez E, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004) The transcriptional control of plant responses to phosphate limitation. J Exp Bot 55:285–293

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Hamburger D, Rezzonico E, Pere′tot JMC, Somerville C, Poirier Y (2002) Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell 14:889–902

    Article  PubMed  CAS  Google Scholar 

  • Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ (2003) Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132:578–596

    Article  PubMed  CAS  Google Scholar 

  • Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP, Greenwood DJ (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60:1953–1968

    Article  PubMed  CAS  Google Scholar 

  • Kidwell KK, Osborn TC (1992) Simple plant DNA isolation procedure. In: Beckman J, Osborn TC (eds) Plant genomes: methods for genetic and physical mapping. Kluwer Academic Publishers, The Netherlands, pp 1–13

    Chapter  Google Scholar 

  • Kim H, Choi SR, Bae J, Hong CP, Lee SY, Hossain MJ, Van Nguyen D, Jin M, Park BS, Bang JW, Bancroft I, Lim YP (2009) Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics 10:432

    Article  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Li YY, Ma CZ, Fu TD, Yang GS, Tu JX, Chen QF, Wang TH, Zhang XG, Li CY (2006) Construction of a molecular functional map of rapeseed (Brassica napus L.) using differentially expressed genes between hybrid and its parents. Euphytica 152:25–39

    Article  CAS  Google Scholar 

  • Lim YP, Plaha P, Choi SR, Um TS, Hong CP, Bang JW, Hur YK (2006) Toward unraveling the structure of Brassica rapa genome. Physiol Plantarum 126:585–591

    Article  CAS  Google Scholar 

  • Liu J, Yang JP, Li RY, Shi L, Zhang CY, Long Y, Xu FS, Meng JL (2009) Analysis of genetic factors that control shoot mineral concentrations in rapeseed (Brassica napus) in different boron environments. Plant Soil 320:255–266

    Article  CAS  Google Scholar 

  • Long Y, Shi JQ, Qiu D, Li RY, Zhang CY, Wang J, Hou JN, Zhao JW, Shi L, Park BS, Choi SR, Lim YP, Meng JL (2007) Flowering time quantitative trait Loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177:2433–2444

    PubMed  CAS  Google Scholar 

  • Lowe A, Moule C, Trick M, Edwards K (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, New York, pp 379–396

    Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102:11934–11939

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Back D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102:7760–7765

    Article  PubMed  CAS  Google Scholar 

  • Morcuende R, Bari R, Gibon Y, Zheng WM, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112

    Article  PubMed  CAS  Google Scholar 

  • Müller R, Morant M, Jarmer H, Nilsson L, Nielsen TH (2007) Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol 143:156–171

    Article  PubMed  Google Scholar 

  • Nilsson L, Müller R, Nielsen TH (2007) Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ 30:1499–1512

    Article  PubMed  CAS  Google Scholar 

  • Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:113

    Article  PubMed  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  PubMed  CAS  Google Scholar 

  • Poirier Y, Bucher M (2002) Phosphate transport and homeostasis in Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book, American Society of Plant Biologists, Rockville. www.aspb/publications/arabidopsis/

  • Raghothama K, Karthikeyan A (2005) Phosphate acquisition. Plant Soil 274:37–49

    Article  CAS  Google Scholar 

  • Robinson AJ, Love CG, Batley J, Barker G, Edwards D (2004) Simple sequence marker loci discovery using SSR primer. Bioinformatics 20:1475–1476

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Dev 15:2122–2133

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti CJ, Dias Neto E, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:914–921

    PubMed  CAS  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Mudge SR, Rae AL, Glassop D (2003) Phosphate transport in plants. Plant Soil 248:71–83

    Article  CAS  Google Scholar 

  • Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098

    Article  PubMed  CAS  Google Scholar 

  • Suwabe K, Morgan C, Bancroft I (2008) Integration of Brassica A genome genetic linkage map between Brasscia napus and B. rapa. Genome 51:169–176

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2006) JoinMap®4.0: software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands

    Google Scholar 

  • Wang C, Ying S, Huang HJ, Li K, Wu P, Shou HX (2009) Involvement of OsSPX1 in phosphate homeostasis in rice. Plant J 57:895–904

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Ma LG, Hou X, Wang M, Wu Y, Liu F, Deng XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132:1260–1271

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Yuan YX, Zhang XW, Zhao JJ, Song XF, Li Y, Li XN, Sun RF, Koornneef M, Aarts MGM, Wang XW (2008) Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Soil 310:25–40

    Article  CAS  Google Scholar 

  • Yang XJ, Finnegan PM (2010) Regulation of phosphate starvation responses in higher plants. Ann Bot 105:513–526

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Ding GD, Shi L, Feng J, Xu FS, Meng JL (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121:181–193

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Ding GD, Shi L, Xu FS, Meng JL (2011) Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant Soil 339:97–111

    Article  CAS  Google Scholar 

  • Zhang HW, Huang Y, Ye XS, Shi L, Xu FS (2009) Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress. Plant Soil 320:91–102

    Article  CAS  Google Scholar 

  • Zhao JJ, Jamar DCL, Lou P, Wang YH, Wu J, Wang XW, Bonnema G, Koornneef M, Vreugdenhil D (2008) Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa. Plant Cell Environ 31:887–900

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Basic Research and Development Program [2011CB100301], China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangsen Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

List of 243 SSR loci indicating GenBank ID, BAC name, chromosomal location of B. rapa BAC, marker name, motif, primer sequences, Tm, expected product size, and primary homologous regions among the 5 chromosomes of the Arabidopsis genome (DOC 591 kb)

Supplementary Table S2

Linkage map of the 733 molecular markers constructed with the B. napus BE-RIL population (DOC 597 kb)

Supplementary Table S3

A total of 1223 orthologs of 356 genes involved in A. thaliana P homeostasis and their locations on B. napus BE-RIL linkage map by in silico mapping (DOC 1143 kb)

Supplementary Fig. S1

Functional classification of 46 mapped loci that represent different genes in the B. napus BE-RIL map (DOC 35 kb)

Supplementary Fig. S2

Comparative map analysis between the present study and results from Parkin et al. (2005) with the RFLP loci converted to their corresponding A. thaliana loci by Panjabi et al. (2008) (PPT 1415 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, G., Liao, Y., Yang, M. et al. Development of gene-based markers from functional Arabidopsis thaliana genes involved in phosphorus homeostasis and mapping in Brassica napus . Euphytica 181, 305–322 (2011). https://doi.org/10.1007/s10681-011-0428-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0428-8

Keywords

Navigation