Skip to main content
Log in

A comprehensive review of indirect solar drying techniques integrated with thermal storage materials and exergy-environmental analysis

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Food processing industries generally use fossil fuels for heating and drying applications leading to increased carbon footprints in the atmosphere. The carbon emissions can be significantly reduced with the use of solar energy. Various solar drying techniques are used to dry agricultural products; however, drying can only be done during the sunshine hours. Outside the sunshine hours, drying can be performed using thermal storage materials in which thermal energy is stored during sunshine hours and utilized during non-sunshine hours. This paper aims to deliver the significance of different thermal storage materials for improving solar drying efficiency. Also, a comparative study on various modes of drying practices like natural and forced convection, with and without thermal storage materials, is presented mainly for indirect solar dryers. The crucial parameters affecting the drying rate, such as initial moisture content, air velocity, air temperature, type of food products, solar collector, and dryer efficiency, are reviewed, tabulated, and significant findings are highlighted. The challenges of using both sensible and latent storage materials were also discussed. The overall drying efficiency of the indirect solar dryers can be increased up to 25% over sun drying, and the collector efficiency can be enhanced up to 70% with thermal storage materials. A significant reduction in drying time of 6 h was noticed with thermal storage materials. The maximum solar collector efficiency of 70% was found with forced convection systems, whereas only 30% was achieved with natural convection systems. Exergy efficiency for most of the recently developed indirect solar dryers was more than 50%, which implies that the developed techniques can still be improved by minimizing the exergy losses. When the exergo-environment analysis was compared with other solar dryers, embodied energy of the indirect solar dryer was much lower when compared with other solar dryers. Therefore, the energy utilization and CO2 emission by the indirect solar dryer is significantly low. This review will guide the researchers to design efficient indirect solar driers and collectors for future applications so that net zero emission can be achievable shortly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability statements

The authors would like to state that the data used in the present study are taken from the literature and are available within the article. The data taken from the literature are suitably cited.

References

  • Abdelkader, T. K., Salem, A. E., Zhang, Y., Gaballah, E. S., Makram, S. O., & Fan, Q. (2021). Energy and exergy analysis of carbon nanotubes-based solar dryer. Journal of Energy Storage, 39, 102623. https://doi.org/10.1016/j.est.2021.102623

  • Abed, M., Abderrahmane, A., Zafar, S., Obai, Y., Misbah, I., Anas, A. (2022). Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: A critical review. Journal of Energy Storage, 49, 104186. https://doi.org/10.1016/j.est.2022.104186

  • Abhay, L., & Chandramohan, V. P. (2021). Numerical investigation on solar air collector and its practical application in the indirect solar dryer for banana chips drying with energy and exergy analysis. Thermal Science and Engineering Progress, 26, 101077. https://doi.org/10.1016/j.tsep.2021.101077

    Article  Google Scholar 

  • Abhimanyu, T., Thakur, N. S., Hamid, H., & Gautam, S. (2020). Effect of packaging on phenols, flavonoids and antioxidant activity of dried wild pomegranate (Punica granatum L.) arils prepared in solar tunnel drier. Annals of Phytomedicine: An International Journal, 9(2), 198–206. https://doi.org/10.21276/ap.2020.9.2.17

  • Adline, H. A., & El-Qarnia, H. (2009). Numerical analysis of the thermal behavior of a shell and tube heat storage unit using phase change materials. Applied Mathematical Modelling, 33, 2132–2144.

    Article  Google Scholar 

  • Ahmad, A., & Prakash, O. (2020). Performance evaluation of a solar greenhouse dryer at different bed conditions under passive mode. Journal of Solar Energy Engineering Transactions of ASME, 142, 1–10. https://doi.org/10.1115/1.4044194

    Article  CAS  Google Scholar 

  • Ahmadi, A., Biplab, D., Ehyaei, M. A., Esmaeilion, F. M., Haj, A. E., Jamali, D. H., Koohshekan, O., Kumar, R., Rosen, M. A., Negi, S., Satya, S. B., & Safari, S. (2021). Energy, exergy, and techno-economic performance analyses of solar dryers for agro products: A comprehensive review. Solar Energy, 228, 349–373. https://doi.org/10.1016/j.solener.2021.09.060

    Article  Google Scholar 

  • Ali, M., Saeid, M., & Khoshtagaza, H. (2011). Evaluation of energy consumption in different drying methods. Energy Conversion and Management, 52(2), 1192–1199. https://doi.org/10.1016/j.enconman.2010.09.014

    Article  Google Scholar 

  • Alimohammadi, Z., Akhijahani, H. S., & Salami, P. (2020). Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods. Solar Energy, 201, 157-177.https://doi.org/10.1016/j.solener.2020.02.079

  • Alva, S. L. H., Gonzalez, J. E., & Dukhan, N. (2006). Initial analysis of PCM integrated solar collector. Journal of Solar Energy Engineering, 128, 173–177.

    Article  Google Scholar 

  • Amer, B. M. A., Hossain, M. A., & Gottschalk, K. (2010). Design and performance evaluation of a new hybrid solar dryer for banana. Energy Conversion Management, 51(4), 813–820. https://doi.org/10.1016/j.enconman.2009.11.016

    Article  Google Scholar 

  • Anan, A. A., Mahadi, H. M., Peter, D., & Asif, A. (2020). Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries. Solar Energy, 196, 270–286. https://doi.org/10.1016/j.solener.2019.11.069

    Article  Google Scholar 

  • Andharia, J. K., Haldar, S., Samaddar, S., et al. (2022). Case study of augmenting livelihood of fishing community at Sagar Island, India, through solar thermal dryer technology. Environment, Development and Sustainability, 24, 11449–11469. https://doi.org/10.1007/s10668-021-01895-y

    Article  Google Scholar 

  • Arumugam, B. (2021). A review of construction, material and performance in mixed mode passive solar dryers. Materials Today: Proceedings, 46(9), 4165–4168. https://doi.org/10.1016/j.matpr.2021.02.679

    Article  Google Scholar 

  • Arun, K. R., Kunal, G., Srinivas, M., Sujith, K., Mohanraj, M., & Jayaraj, S. (2020). Drying of untreated Musa nendra and Momordica charantia in a forced convection solar cabinet dryer with thermal storage. Energy, 192, 116697.

    Article  Google Scholar 

  • Asim, A., Prakash, O., & Anil, A. (2021). Drying kinetics and economic analysis of bitter gourd flakes drying inside hybrid greenhouse dryer. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-17044-x

    Article  Google Scholar 

  • Atalay, H. (2019). Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system. Energy, 172, 1037–1052. https://doi.org/10.1016/j.energy.2019.02.023

    Article  Google Scholar 

  • Atul, K., & Tara, C. K. (2005). Solar drying and CO2 emissions mitigation: Potential for selected cash crops in India. Solar Energy, 78(2), 321–329. https://doi.org/10.1016/j.solener.2004.10.001

    Article  Google Scholar 

  • El Aymen, K., Salwa, B., Sami, K., Abdelhamid, F., & Amenallah, G. (2017). Thermal behaviour of indirect solar dryer: Nocturnal usage of solar air collector with PCM. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.01.149

    Article  Google Scholar 

  • Ayyappan, S. (2018). Performance and CO2 mitigation analysis of a solar greenhouse dryer for coconut drying. Energy & Environment, 29(8), 1482–1494.

    Article  Google Scholar 

  • Azwin, K., Hasanuzzaman, M., & Rahim, N. A. (2021). Global advancement of solar drying technologies and its future prospects: A review. Solar Energy, 221, 559–582. https://doi.org/10.1016/j.solener.2021.04.056

    Article  Google Scholar 

  • Baber, A. O., Ayon, T., Santanu, M., Vinkel, K. A., & Nema, P. K. (2020). Design and performance evaluation of a passive flat plate collector solar dryer for agricultural products. Journal of Food Process Engineering, 43(10), e13484.

    Article  Google Scholar 

  • Banavath, S., Shishir, S., & Lok, P. S. (2021). Phase change materials for renewable energy storage applications. Management and Applications of Energy Storage Devices. https://doi.org/10.5772/intechopen.98914

    Article  Google Scholar 

  • Barnwal, P., & Tiwari, G. N. (2008). Life cycle energy metrics and CO2 credit analysis of a hybrid photovoltaic/thermal greenhouse dryer. International Journal of Low Carbon Technologies, 203–220.

  • Belessiotis, V., & Delyannis, E. (2011). Solar drying. Solar Energy, 85, 1665–1691. https://doi.org/10.1016/j.solener.2009.10.001

    Article  Google Scholar 

  • Bharadwaz, K., Barman, D., Bhowmilk, D., & Ahmend, Z. (2017). Design, fabrication and performance evaluation of an indirect solar dryer for drying agricultural products. International Research Journal of Engineering and Technology, 4(7), 1684–1692.

    Google Scholar 

  • Bhardwaja, A. K., Raj, K., Ranchan, C., & Sushil, K. (2020). Experimental investigation and performance evaluation of a novel solar dryer integrated with a combination of SHS and PCM for drying chilli in the Himalayan region. Thermal Science and Engineering Progress, 20, 100713.

    Article  Google Scholar 

  • Bin, L., Xiaoqiang, Z., & Xiwen, C. (2018). Experimental and numerical investigation of a solar collector/storage system with composite phase change materials. Solar Energy, 164, 65–76. https://doi.org/10.1016/j.solener.2018.02.031

    Article  CAS  Google Scholar 

  • Buchgeister, J. (2010). Exergoenvironmental analysis – A new approach to support the design for environment of chemical processes. Chemical Engineering Technology, 33(4), 593–602.

    Article  CAS  Google Scholar 

  • Cesar, L. E., Cesar-Munguía, A. L., García-Valladares, O., Pilatowsky, F. I., & Brito, O. R. (2020). Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renewable Energy, 147, 845–855.

    Article  Google Scholar 

  • Cetina-Quiñones, A. J., López López, J., Ricalde-Cab, L., El Mekaoui, A., San-Pedro, L., & Bassam, A. (2021). Experimental evaluation of an indirect type solar dryer for agricultural use in rural communities: Relative humidity comparative study under winter season in tropical climate with sensible heat storage material. Solar Energy, 224, 58–75, https://doi.org/10.1016/j.solener.2021.05.040

  • Chandrakumar, B. P., & Jiwanlal, L. B. (2013). Development and performance evaluation of mixed-mode solar dryer with forced convection. International Journal of Energy and Environmental Engineering, 4, 23.

    Article  Google Scholar 

  • Chauhan, R., & Thakur, N. S. (2014). Investigation of the thermohydraulic performance of impinging jet solar air heater. Energy, 68, 255–261, https://doi.org/10.1016/j.energy.2014.02.059

  • Çiftçi, E., Khanlari, A., Sözen, A., Aytaç, İ, & Doğuş Tuncer, A. (2021). Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation. Renewable Energy, 180, 410–423. https://doi.org/10.1016/j.renene.2021.08.081

    Article  Google Scholar 

  • Dash, S., Choudhury, S., & Dash, K. K. (2022). Energy and exergy analyses of solar drying of black cardamom (Amomum subulatom Roxburgh) using indirect type flat plate collector solar dryer. Journal of Food Process Engineering, 45(4), e14001. https://doi.org/10.1111/jfpe.14001

    Article  CAS  Google Scholar 

  • Dilip, J., & Parthiban, T. (2015). Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage. Renewable Energy, 80, 244–250.

    Article  Google Scholar 

  • Ekka, J. P., Muthukumar, P., Bala, K., Kanaujiya, D. K., & Pakshirajan, K. (2021). Performance studies on mixed-mode forced convection solar cabinet dryer under different air mass flow rates for drying of cluster fig. Solar Energy, 229, 39–51, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2021.06.086

  • ElGamal, R., Kishk, S., Al-Rejaie, S., ElMasry, G. (2021). Incorporation of a solar tracking system for enhancing the performance of solar air heaters in drying apple slices. Renewable Energy, 167, 676–684, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2020.11.137

  • El-Sebaii, A. A., Aboul-Enein, S., Ramadan, M. R. I., & El-Gohary, H. G. (2002). Experimental investigation of an indirect type natural convection solar dryer. Energy Conversion and Management, 43(6), 2251–2266.

    Article  CAS  Google Scholar 

  • El-Sebaii, A., Aboul-Enein, S., Ramadan, M. R. I., & El-Bialy, E. (2007). Year round performance of double pass solar air heater with packed bed. Energy Conversion and Management, 48(30), 990–1003. https://doi.org/10.1016/j.enconman.2006.08.010

    Article  CAS  Google Scholar 

  • Eman-Bellah, S., & Assassa, G. M. R. (2006). Experimental study of a compact PCM solar collector. Energy, 31(14), 2958–2968. https://doi.org/10.1016/j.energy.2005.11.019

    Article  Google Scholar 

  • Eshetu, G., Nigus, G., Delele, M. A., Fanta, S. W., & Vanierschot, M. (2021). Two-stage solar tunnel chili drying: Drying characteristics, performance, product quality, and carbon footprint analysis. Solar Energy, 230, 73–90. https://doi.org/10.1016/j.solener.2021.10.016

    Article  CAS  Google Scholar 

  • Etim, P. J., & EKeSimonyan, A. B. K. J. (2020). Design and development of an active indirect solar dryer for cooking banana. Scientific African, 8, e00463.

    Article  Google Scholar 

  • Fadhel, M. I., Abdo, R. A., Yousif, B. F., Zaharim, A. & Sopian, K. (2011). Thin-layer drying characteristics of banana slices in forced convection indirect solar drying. In Recent researches in energy and environment - 6th IASME / WSEAS international conference on energy and environment, Cambridge (UK), pp. 310–315.

  • Fan, Z., Jie, J., Weiqi, Y., Xudong, Z., & Shengjuan, H. (2019). Study on the PCM flat-plate solar collector system with antifreeze characteristics. International Journal of Heat and Mass Transfer, 129, 357–366. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.114

    Article  Google Scholar 

  • Ghasem, S., Okhtay, T., & Farokh, M. (2012). New technologies of solar drying systems for agricultural and marine products. The 1st Middle-East Drying Conference.

  • Gilago, M. C., Mugi, V. R., & Chandramohan, V. P. (2022). Investigation of exergy-energy and environ-economic performance parameters of active indirect solar dryer for pineapple drying without and with energy storage unit. Sustainable Energy Technologies and Assessments, 53(Part C), 102701, ISSN 2213-1388. https://doi.org/10.1016/j.seta.2022.102701

  • Guo, L., Yang, Y., Fraser, P.J. et al. (2023). Projected increases in emissions of high global warming potential fluorinated gases in China. Commun Earth Environ, 4, 205. https://doi.org/10.1038/s43247-023-00859-6

  • Halil, A., & Eda, C. (2021). Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium. Energy, 216, 119221. https://doi.org/10.1016/j.energy.2020.119221

    Article  Google Scholar 

  • Hegde, V. N., Hosur, V. S., Rathod, S. K., Harsoor, P. A., & Narayana, K. B. (2015). Design, fabrication and performance evaluation of solar dryer for banana. Energy, Sustainability and Society, 5, 23. https://doi.org/10.1186/s13705-015-0052-x

    Article  Google Scholar 

  • Hicham, H., Amal, H., Mohamad, R., Hassan, B., & Mahmoud, K. (2018). An investigation on solar drying: A review with economic and environmental assessment. Energy, 157, 815–829. https://doi.org/10.1016/j.energy.2018.05.197

    Article  Google Scholar 

  • Hind, K., Rachid, T., Ahmed, I., Mohammed, B. (2022). Indirect solar dryer with a single compartment for food drying. Application to the drying of the pear. Solar Energy, 240, 131–139. https://doi.org/10.1016/j.solener.2022.05.025

  • Hoseinzadeh, S., Ghasemiasl, R., Havaei, D., & Chamkha, A. J. (2018). Numerical investigation of rectangular thermal energy storage units with multiple phase change materials. Journal of Molecular Liquids, 271, 655–660. https://doi.org/10.1016/j.molliq.2018.08.128

    Article  CAS  Google Scholar 

  • Hui, W., Ying, Z., Enda, C., & Li, J. (2021). An experimental study in full spectra of solar-driven magnesium nitrate hexahydrate/graphene composite phase change materials for solar thermal storage applications. Journal of Energy Storage, 38, 102536.

    Article  Google Scholar 

  • Jasinta, P. E., & Muthukumar, P. (2021). Performance assessments and techno and enviro-economic analyses on forced convection mixed mode solar dryer. Journal of Food Process Engineering, 44(5), e13675.

    Article  Google Scholar 

  • Karunesh, K., Shukla, A., Atul, S., Anil, K., & Anand, J. (2016). Thermal energy storage based solar drying systems: A review. Innovative Food Science & Emerging Technologies, 34, 86–99. https://doi.org/10.1016/j.ifset.2016.01.007

    Article  Google Scholar 

  • Kavak Akpinar, E., & Kavak, B. (2008). Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun. Energy Conversion and Management, 49(6), 1367–1375.

    Article  Google Scholar 

  • Khalid, H., Almitani Nidal, H., Abu-Hamdeh, Mashhour, A., Alazwari, Elias, M., Radwan, A., Almasri, S., & Mohammad, S. (2021). Role of solar radiation on the phase change material usefulness in the building applications. Journal of Energy Storage, 103542, https://doi.org/10.1016/j.est.2021.103542

  • Lalit, M. B., Santosh, S., Naik, S. N., & Venkatesh, M. (2011). Review of solar dryers with latent heat storage systems for agricultural products. Renewable and Sustainable Energy Reviews, 15(1), 876–880.

    Article  Google Scholar 

  • Lamrani, B., Khouya, A., & Draoui, A. (2019). Energy and environmental analysis of an indirect hybrid solar dryer of wood using TRNSYS software. Solar Energy, 183, 132–145. https://doi.org/10.1016/j.solener.2019.03.014

    Article  CAS  Google Scholar 

  • Letícia, F. H., Mariana, N. C., Karina, N., José, T. F., & Gustavo, N. A. (2021). Natural and forced air convection operation in a direct solar dryer assisted by photovoltaic module for drying of green onion. Solar Energy, 220, 24–34. https://doi.org/10.1016/j.solener.2021.02.061

    Article  Google Scholar 

  • Lingayat Abhay, Chandramohan, V. P., & Raju, V. R. K. (2017). Design, development and performance of indirect type solar dryer for banana drying. Energy Procedia, 109, 409–416. https://doi.org/10.1016/j.egypro.2017.03.041

    Article  Google Scholar 

  • Lingayat, A., Chandramohan, V. P., & Raju, V. R. K. (2020). Energy and exergy analysis on drying of banana using indirect type natural convection solar dryer. Heat Transfer Engineering, 41(6–7), 551–561.

    Article  CAS  Google Scholar 

  • Ma, C. M., Chen, M. H., & Hong, G. B. (2012). Energy conservation status in Taiwanese food industry. Energy Policy, 50, 458–463.

    Article  Google Scholar 

  • Madhankumar, S., Viswanathan, K., & Wu, W. (2021). Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material. Renewable Energy, 176, 280-294https://doi.org/10.1016/j.renene.2021.05.085

  • Margarita, C., Isaac, P., Erick, C. L., Omar, S., & Geovanni, H. (2017). Dehydration of the red chilli (Capsicum annuum L., costeño) using an indirect-type forced convection solar dryer. Applied Thermal Engineering, 114, 1137–1144.

    Article  Google Scholar 

  • Matavel, C. E., Hoffmann, H., Rybak, C., Hafner, J. M., Salavessa, J., Eshetu, S. B., & Sieber, S. (2021). Experimental evaluation of a passive indirect solar dryer for agricultural products in Central Mozambique. Journal of Food Processing and Preservation, 45, e15975. https://doi.org/10.1111/jfpp.15975

    Article  CAS  Google Scholar 

  • Merlin, S., Macmanus, C. N., André, Z., Lyes, B., Fatima, K., & Yann, R. (2020). Numerical analysis and validation of a natural convection mix-mode solar dryer for drying red chilli under variable conditions. Renewable Energy, 151, 659–673. https://doi.org/10.1016/j.renene.2019.11.055

    Article  CAS  Google Scholar 

  • Messaoud, S., Abdelghani, B., Djamel, M., & Noureddine, G. (2019). Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply. An experimental investigation and simulation study. Renewable Energy, 135, 186–196, ISSN 0960-1481. https://doi.org/10.1016/j.renene.2018.11.086

  • Mingyang, H., Wei, H., Atilla, I., Munish, K., Grzegorz, K., & Zhejiang, L. (2021). Phase change material heat storage performance in the solar thermal storage structure employing experimental evaluation. Journal of Energy Storage, 103638.

  • Mohammad, K., Reza, A. C., Ebrahim, T., Vali, R. S., & Ali, M. (2020). Evaluation of specific energy consumption and GHG emissions for different drying methods (Case study: Pistacia Atlantica). Journal of Cleaner Production, 259, 120963. https://doi.org/10.1016/j.jclepro.2020.120963

    Article  CAS  Google Scholar 

  • Mongi, R. J., & Ngoma, S. J. (2022). Effect of solar drying methods on proximate composition, sugar profile and organic acids of mango varieties in Tanzania. Applied Food Research, 2(2), 100140, ISSN 2772-5022. https://doi.org/10.1016/j.afres.2022.100140

  • Mugi, V. R., & Chandramohan, V. P. (2021). Energy, exergy and economic analysis of an indirect type solar dryer using green chilli: A comparative assessment of forced and natural convection. Thermal Science and Engineering Progress, 24, 100950. https://doi.org/10.1016/j.tsep.2021.100950

  • Mugi, V. R., Das P., Balijepalli, R., & Chandramohan, V. P. (2022). A review of natural energy storage materials used in solar dryers for food drying applications. Journal of Energy Storage, 49, 104198, ISSN 2352-152X, https://doi.org/10.1016/j.est.2022.104198

  • Muruganantham, K., Phelan, P., Horwath, P., Ludlam, D., & McDonald, T. (2010). Experimental investigation of a bio-based phase-change material to improve building energy performance. Proceedings of ASME. 4th International Conference on Energy Sustainability.

  • Nassar, Y. F., Salem, M. A., Iessa, K. R., et al. (2021). Estimation of CO2 emission factor for the energy industry sector in libya: A case study. Environment, Development and Sustainability, 23, 13998–14026. https://doi.org/10.1007/s10668-021-01248-9

    Article  Google Scholar 

  • Nihal, S., & Emel, O. (2012). Organic phase change materials and their textile applications: An overview. Thermochimica Acta, 540, 7–60. https://doi.org/10.1016/j.tca.2012.04.013

    Article  CAS  Google Scholar 

  • Onkar, A. B., Vinkel, K. A., Prabhat, K. N., Akansha, K., & Ayon, T. (2021). Effect of PCM assisted flat plate collector solar drying of green chili on retention of bioactive compounds and control of aflatoxins development. Solar Energy, 229, 102–111. https://doi.org/10.1016/j.solener.2021.07.077

    Article  CAS  Google Scholar 

  • Ouaabou, R., Nabil, B., Ouhammou, M., Idlimam, A., Lamharrar, A., Ennahli, S., Hanine, H., & Mahrouz, M. (2020). Impact of solar drying process on drying kinetics, and on bioactive profile of Moroccan sweet cherry. Renewable Energy, 151, 908–918, ISSN 0960-1481. https://doi.org/10.1016/j.renene.2019.11.078

  • Pangavhane, D. R., & SawhneySarsavadia, R. L. P. N. (2002). Design, development and performance testing of a new natural convection solar dryer. Energy, 27(6), 579–590.

    Article  Google Scholar 

  • Pause, B. (2019). 7 - Phase change materials and their application in coatings and laminates for textiles Smart Textile Coatings and Laminates (Second Edition). The Textile Institute Book Series (pp. 175–187).

  • Pingrui, H., Gaosheng, W., Liu, C., Chao, X., & Xiaoze, D. (2021). Numerical investigation of a dual-PCM heat sink using low melting point alloy and paraffin. Applied Thermal Engineering, 189, 116702.

    Article  Google Scholar 

  • Prakash, O., & Kumar, A. (2014). Environomical analysis and mathematical modelling for tomato flakes drying in a modified greenhouse dryer under active mode. International Journal of Food Engineering, 1–13.

  • Prakesh, O., Kumar, A., & Sharaf-Eldeen, Y. (2016). Review on Indian solar drying status. Current Sustainable/renewable Energy Reports, 3(3–4), 113–120.

    Article  Google Scholar 

  • Prakash, O., Kumar, A., Chauhan, P. S., & Onwude, D. I. (2017). Energy analysis of the direct and indirect solar drying system. In Solar drying technology. Green Energy and Technology book series. Springer. https://doi.org/10.1007/978-981-10-3833-4_19

  • Prashant, S. C., Anil, K., & Chayut, N. (2018). Thermo-environomical and drying kinetics of bitter gourd flakes drying under north wall insulated greenhouse dryer. Solar Energy, 162, 205–216. https://doi.org/10.1016/j.solener.2018.01.023

    Article  Google Scholar 

  • Rabha, D. K., & Muthukumar, P. (2017). Performance studies on a forced convection solar dryer integrated with a paraffin wax–based latent heat storage system. Solar Energy, 149, 214–226.

    Article  CAS  Google Scholar 

  • Radouane, E., & Hamid, E. Q. (2019). Performance evaluation of a solar thermal energy storage system using nanoparticle-enhanced phase change material. International Journal of Hydrogen Energy, 44(3), 2013–2028. https://doi.org/10.1016/j.ijhydene.2018.11.116

    Article  CAS  Google Scholar 

  • Rajarajeswari, K., Hemalatha, B., & Sreekumar, A. (2018). Role of solar drying systems to mitigate CO2 emissions in food processing industries. In A. Sharma, A. Shukla, L. Aye (Eds.), Low Carbon Energy Supply. Green Energy and Technology. Springer. https://doi.org/10.1007/978-981-10-7326-7_4

  • Rani, P., & Tripathy, P. P. (2021). Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates. Renewable Energy, 167, 508–519, https://doi.org/10.1016/j.renene.2020.11.107

  • Rodríguez-Ramírez, J., Méndez-Lagunas, L. L., López-Ortiz, A., Muñiz-Becerá, S., & Nair, K. (2021). Solar drying of strawberry using polycarbonate with UV protection and polyethylene covers: Influence on anthocyanin and total phenolic content. Solar Energy, 221, 120–130, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2021.04.025.

  • Rubitherm Technologies 2015G. mbH. http://www.rubitherm.en/en/>

  • Salazar-Núñez, H. F., Venegas-Martínez, F., & Lozano-Díez, J. A. (2022). Assessing the interdependence among renewable and non-renewable energies, economic growth, and CO2 emissions in Mexico. Environment, Development and Sustainability, 24, 12850–12866. https://doi.org/10.1007/s10668-021-01968-y

    Article  Google Scholar 

  • Sansaniwal, S. K., & Kumar, M. (2015). Analysis of ginger drying inside a natural convection indirect solar dryer: An experimental study. Journal of Mechanical Engineering and Sciences, 9, 1671–1685. https://doi.org/10.15282/jmes.9.2015.13.0161

  • Sari, A., & Kaygusuz, K. (2002). Thermal performance of palmitic acid as a phase change energy storage material. Energy Conversion and Management, 43(6), 863–876. https://doi.org/10.1016/S0196-8904(01)00071-1

    Article  CAS  Google Scholar 

  • Saw, C. L., Al-Kayiem, H. H., & Owolabi, A. L. (2013). Experimental investigation on the effect of PCM and nano-enhanced PCM of integrated solar collector performance. Transactions on Ecology and the Environment, 179(2), 899–909.

    Article  Google Scholar 

  • Shalaby, S. M., & Bek, M. A. (2010). Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium. Energy Conversion and Management, 83, 1–8.

    Article  Google Scholar 

  • Shalaby, M., Bek, M. A., & El-Sebaii, A. A. (2014). Solar dryers with PCM as energy storage medium – A review. Renewable and Sustainable Energy Reviews, 33, 110–116.

    Article  CAS  Google Scholar 

  • Sharma, M., Atheaya, D., & Kumar, A. (2022). Exergy, drying kinetics, and performance assessment of Solanum lycopersicum (tomatoes) drying in an indirect type domestic hybrid solar dryer (ITDHSD) system. Journal of Food Processing and Preservation., 46(11), e16988. https://doi.org/10.1111/jfpp.16988

    Article  CAS  Google Scholar 

  • Sharma, M., Atheaya, D., & Kumar, A. (2021). Recent advancements of PCM based indirect type solar drying systems: A state of art. Materials Today: Proceedings, 47(17), 5852–5855, ISSN 2214-7853. https://doi.org/10.1016/j.matpr.2021.04.280

  • Simate, I. N. (2003). Optimization of mixed-mode and indirect-mode natural convection solar dryers. Renewable Energy, 28(3), 435–453.

    Article  Google Scholar 

  • Singh, P., & Gaur, M. K. (2021). Sustainability assessment of hybrid active greenhouse solar dryer integrated with evacuated solar collector. Current Research in Food Science, 4, 684–691. https://doi.org/10.1016/j.crfs.2021.09.011

    Article  CAS  Google Scholar 

  • Singh, D., & Mall, P. (2020). Experimental investigation of thermal performance of indirect mode solar dryer with phase change material for banana slices. Energy Sources, Part a: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2020.1810825

    Article  Google Scholar 

  • Singh, S., Chaurasiya, S. K. Negi, B. S. Chander, S. Nemś, M., & Negi, S. (2020). Utilizing circular jet impingement to enhance thermal performance of solar air heater. Renewable Energy, 154, 1327-1345.https://doi.org/10.1016/j.renene.2020.03.095

  • Sivakumar, S., Velmurugan, C., Ebenezer Jacob Dhas, D. S., Brusly Solomon, A., & Leo Dev Wins, K. (2020). Effect of nano cupric oxide coating on the forced convection performance of a mixed-mode flat plate solar dryer. Renewable Energy, 155, 1165–1172, https://doi.org/10.1016/j.renene.2020.04.027

  • Srinivasan, G., Rabha, D. K., & Muthukumar, P. (2021). A review on solar dryers integrated with thermal energy storage units for drying agricultural and food products. Solar Energy, 229, 22–38. https://doi.org/10.1016/j.solener.2021.07.075

    Article  Google Scholar 

  • Srivastava, A., Anand, A., Shukla, A., Kumar, A., Buddhi, D., & Sharma, A. (2021). A comprehensive overview on solar grapes drying: Modeling, energy, environmental and economic analysis. Sustainable Energy Technologies and Assessments, 47, 101513, ISSN 2213-1388. https://doi.org/10.1016/j.seta.2021.101513

  • Subramaniyan, C., Prakash, K.B., Kalidasan, B., Bhuvanesh, N., & Amarkarthik, A. (2021). Exergy analysis on performance of groundnut solar dryer with forced convection. IOP Conference Series: Materials Science and Engineering. 1059. No. 1. IOP Publishing.

  • Sun, Y., Qian, L., & Liu, Z. (2022). The carbon emissions level of China’s service industry: An analysis of characteristics and influencing factors. Environment, Development and Sustainability, 24, 13557–13582. https://doi.org/10.1007/s10668-021-02001-y

    Article  Google Scholar 

  • Tailon, M., Alisson Castro Barreto, Francisca Mendonça Souza, Adriano Mendonça S. (2021). Fossil fuels consumption and carbon dioxide emissions in G7 countries: Empirical evidence from ARDL bounds testing approach, Environmental Pollution, 291, 118093. https://doi.org/10.1016/j.envpol.2021.118093.

  • Thirugnanasambandam, M., Iniyan, S., & Goic, R. (2010). A review of solar thermal technologies. Renewable and Sustainable Energy Reviews, 14(1), 312–322. https://doi.org/10.1016/j.rser.2009.07.014

  • Tripathy, P. P. (2015). Investigation into solar drying of potato: Effect of sample geometry on drying kinetics and CO2 emissions mitigation. Journal of Food Science and Technology, 52(3), 1383–1393. https://doi.org/10.1007/s13197-013-1170-0

    Article  CAS  Google Scholar 

  • Velraj, R. (2016). Sensible heat storage for solar heating and cooling systems. In Advances in Solar Heating and Cooling (pp. 399–428). Elsevier. https://doi.org/10.1016/B978-0-08-100301-5.00015-1

  • Vignesh, K. N., Venkatasudhahar, M., & Manoj, K. P. (2021). Investigation on indirect solar dryer for drying sliced potatoes using phase change materials (PCM). Materials Today: Proceedings, 47, 5233–5238. https://doi.org/10.1016/j.matpr.2021.05.562

    Article  Google Scholar 

  • Vijayan, S., & Arjunan, T. V. (2015). Performance study of an indirect forced convection solar dryer for potato. International Journal of Applied Engineering Research, 10(50), 454–458.

    Google Scholar 

  • Vijayan, S., Arjunana, T. V., & Anil, K. (2016). Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer. Innovative Food Science and Emerging Technologies, 36, 59–67.

    Article  Google Scholar 

  • Vijayan, S., Arjunan, T. V., & Anil, K. (2020). Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices. Renewable Energy, 146, 2210–2223. https://doi.org/10.1016/j.renene.2019.08.066

    Article  Google Scholar 

  • Vipin, S., & Anil, K. (2017). Embodied energy analysis of the indirect solar drying unit. International Journal of Ambient Energy, 38(3), 280–285. https://doi.org/10.1080/01430750.2015.1092471

    Article  CAS  Google Scholar 

  • Yi, Y., Yoong, X. P., Sivakumar, M., Edward, L., Tao, W., Cheng, H. P. (2022). A review study on recent advances in solar drying: Mechanisms, challenges and perspectives. Solar Energy Materials and Solar Cells, 248, 111979. https://doi.org/10.1016/j.solmat.2022.111979

  • Wafa, B. C., Abdellah, K., Ahmed, M., Mohamed, A. S., Akil, L., & Abdelkader, H. (2018). Experimental investigation of an active direct and indirect solar dryer with sensible heat storage for camel meat drying in Saharan environment. Solar Energy, 174, 328–341. https://doi.org/10.1016/j.solener.2018.09.037

    Article  Google Scholar 

  • Wu, X., Gao, M., Wang, K., Wang, Q., Cheng, C., Zhu, Y., Zhang, F., & Zhang, Q. (2021). Experimental study of the thermal properties of a homogeneous dispersion system of a paraffin-based composite phase change materials. Journal of Energy Storage, 36, 102398. https://doi.org/10.1016/j.est.2021.102398

    Article  Google Scholar 

  • Zakir, K., Zulfiqar, K., & Abdul, G. (2016). A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Conversion and Management, 115, 132–158.

    Article  Google Scholar 

  • Zhaowen, H., Zigeng, L., Xuenong, G., Xiaoming, F., Yutang, F., & Zhengguo, Z. (2017). Preparation and thermal property analysis of wood’s alloy/expanded graphite composite as highly conductive form-stable phase change material for electronic thermal management. Applied Thermal Engineering, 122, 322–329. https://doi.org/10.1016/j.applthermaleng.2017.04.154

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha A Monicka.

Ethics declarations

Conflict of interest

The authors wish to state that the co-authors do not have any conflict of interest among them, and it is the new and collaborative work of Asha Monicka A, Pragalyaa Shree, Freeda Blessie. R, Humeera Tazeen, B. Navaneetham, S. Sheryl Andria and A. Brusly Solomon. Also, the authors would like to confirm that this work is not submitted elsewhere for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monicka, A.A., Shree, P., Freeda Blessie, R. et al. A comprehensive review of indirect solar drying techniques integrated with thermal storage materials and exergy-environmental analysis. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04755-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04755-7

Keywords

Navigation