Skip to main content
Log in

Sustainable hydrogen production through water splitting: a comprehensive review

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The continuous increase in population is causing a lot of pressure on energy production sector due to the huge demand at domestic and industrial scales. Developed and developing countries have set restrictions on the energy use from greenhouse gas emissions point of view. Hydrogen as a clean source of energy has been given full research consideration due to its high energy density. However, there are many challenges in producing hydrogen efficiently, economically and environmental friendly. Hydrogen can be produced from biomass and water splitting processes using renewable energy sources, which are extensively discussed in this work. The strength, weakness, opportunities and threats (SWOT) of hydrogen production processes are presented and discussed considering different methods of hydrogen production. Moreover, energy, exergy, economic and environment analyses (4E) for hydrogen production from water splitting process are discussed. In addition to SWOT factor, political, economic, social and technological (PEST) considerations are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data is available as request.

Abbreviations

\({{\text{C}}}_{{\text{ei}}}\) :

Exergoenvironmental impact factor

Cp :

Specific Heat (kJ kg1 K1)

\(\overline{{\text{ex}} }\) :

Specific molar exergy (kJ/mol)

\(\dot{Ex}\) :

Exergy rate

\({{\text{f}}}_{{\text{ei}}}\) :

Exergoenvironment factor

\({{\text{f}}}_{{\text{es}}}\) :

Factor of exergy stability

∆G:

Gibbs energy (molar basis)

Ḣ:

Total enthalpy rate (kW)

\({\overline{h} }^{0}\) :

Specific molar enthalpy at the reference conditions (kJ/mol)

\({\overline{h} }_{f}^{0}\) :

Specific molar enthalpy for formation (kJ/mol)

\({{\text{k}}}_{{\text{i}}}\) :

Product’s specific cost

\(\dot{m}\) :

Molar mass ((kg/kmol))

M:

Molar mass (kg/kmol)

\({\dot{{\text{m}}}}_{{\text{H}}2}\) :

Rate of hydrogen production (kg/s)

n:

Number of moles

\(\dot{n}\) :

Molar flow rate (mol/s)

Q̇:

Heat rate (kW)

\(\sum \dot{{\text{Q}}}\) :

Sum of reaction heat and required heat by the system (kW)

r:

Discount factor

T:

Temperature (˚C or K)

Ẇ:

Work by the cycle (kW)

\({{\text{Y}}}_{{\text{i}}}\) :

Annual production capacity

Z:

Capital investment (USD)

\(\upeta\) :

Energy efficiency

\({\upeta }_{{\text{ex}}}\) :

Exergy efficiency

\(\theta _{{\text{ei}}}\) :

Environmental damage effectiveness

\(\theta _{{\text{eii}}}\) :

Exergoenvironmental enhancement Factor

cyc:

Cycle

in:

Inlet

out:

Outlet

rxn:

Reaction

step:

Steps

sys:

System

\({\text{tot}}.{\text{out}}\) :

Total output

4E:

Energy, exergy, economic and environment analyses

AEC:

Alkaline electrolysis cell

Cash flow:

CF

GWP:

Global warming potential

HHV:

Higher heating value

IEA:

International Energy Agency

IRR:

Internal rate of return

LCA:

Life cycle analysis

LHV:

Lower heating value

NPV:

Net present value

PEC:

Photoelectrochemical cells

PEME:

Proton exchange membrane electrolysis

PEMEC:

Polymer electrolyte Membrane electrolysis

PEST:

Political, economic, social and technological

PP:

Payback period

Photovoltaic:

PV

R&D:

Research and Development

SCWG:

Supercritical Water Gasification

SI:

Sulphur-iodine

SOEC:

Solid oxide electrolysis cell

SPP:

Simple payback period

SWOT:

Strength, weakness, opportunities and threats

USD:

United States Dollar

WGS:

Water–gas shift

WH:

Westinghouse

YSZ:

Yttrium stabilized zirconia

References

  • Abanades, S., Charvin, P., Lemont, F., & Flamant, G. (2008). Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen. International Journal of Hydrogen Energy, 33(21), 6021–6030.

    Article  CAS  Google Scholar 

  • Adu-Poku, K. A., Appiah, D., Asosega, K. A., Derkyi, N. S. A., Uba, F., Kumi, E. N., Akowuah, E., Akolgo, G. A., & Gyamfi, D. (2022). Characterization of fuel and mechanical properties of charred agricultural wastes: Experimental and statistical studies. Energy Reports, 8, 4319–4331.

    Article  Google Scholar 

  • Acar, C., Dincer, I., & Naterer, G. F. (2016). Review of photocatalytic water-splitting methods for sustainable hydrogen production. International Journal of Energy Research, 40(11), 1449–1473.

    Article  ADS  CAS  Google Scholar 

  • Acar, C., Dincer, I., & Zamfirescu, C. (2014). A review on selected heterogeneous photocatalysts for hydrogen production. International Journal of Energy Research, 38(15), 1903–1920.

    Article  ADS  CAS  Google Scholar 

  • Ahmad, H., Kamarudin, S. K., Minggu, L. J., & Kassim, M. (2015). Hydrogen from photo-catalytic water splitting process: A review. Renewable and Sustainable Energy Reviews, 43, 599–610.

    Article  CAS  Google Scholar 

  • Ahmadi, A., Biplab Das, M. A., Ehyaei, F. E., El Haj Assad, M., Jamali, D. H., Koohshekan, O., Kumar, R., Rosen, M. A., & Negi, S. (2021a). Energy, exergy, and techno-economic performance analyses of solar dryers for agro products: A comprehensive review. Solar Energy, 228, 349–373.

    Article  ADS  Google Scholar 

  • Ahmadi, A., Ehyaei, M. A., Jamali, D. H., Despotovic, M., Esmaeilion, F., Abdalisousan, A., & Hani, E. B. (2021b). Energy, exergy, and economic analyses of integration of heliostat solar receiver to gas and air bottom cycles. Journal of Cleaner Production, 280, 124322. https://doi.org/10.1016/j.jclepro.2020.124322

    Article  Google Scholar 

  • Ahmadi, A., Jamali, D. H., Ehyaei, M. A., & El Haj Assad, M. (2020). Energy, exergy, economic and exergoenvironmental analyses of gas and air bottoming cycles for production of electricity and hydrogen with gas reformer. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.120915

    Article  Google Scholar 

  • Alvani, C., La Barbera, A., Ennas, G., Padella, F., & Varsano, F. (2006). Hydrogen production by using manganese ferrite: Evidences and benefits of a multi-step reaction mechanism. International Journal of Hydrogen Energy, 31(15), 2217–2222.

    Article  CAS  Google Scholar 

  • Alvani, C., Bellusci, M., La Barbera, A., Padella, F., Pentimalli, M., Seralessandri, L., & Varsano, F. (2009). Reactive pellets for improved solar hydrogen production based on sodium manganese ferrite thermochemical cycle. Journal of Solar Energy Engineering, 10(1115/1), 3142723.

    Google Scholar 

  • Amouyal, E. (1995). Photochemical production of hydrogen and oxygen from water: A review and state of the art. Solar Energy Materials and Solar Cells, 38(1–4), 249–276.

    Article  CAS  Google Scholar 

  • Arslan, O., & Er, I. D. (2008). SWOT analysis for safer carriage of bulk liquid chemicals in tankers. Journal of Hazardous Materials, 154(1–3), 901–913.

    Article  CAS  PubMed  Google Scholar 

  • Akolgo, A., Gilbert, F. K., Essandoh, E. O., Atta-Darkwa, T., Bart-Plange, A., Kyei-Baffour, N., and De Freitas Maia, M. B. C. (2019). Review of Biomass Gasification Technologies: Guidelines for the Ghanaian Situation.

  • Ayodele, T. R., & Munda, J. L. (2019). Potential and economic viability of green hydrogen production by water electrolysis using wind energy resources in South Africa. International Journal of Hydrogen Energy, 44(33), 17669–17687.

    Article  CAS  Google Scholar 

  • Babatunde, B. O., & Adebisi, A. O. (2012). Strategic environmental scanning and organization performance in a competitive business environment. Economic Insights-Trends & Challenges 64(1). 220.225.

  • Bahari, M., Entezari, A., Esmaeilion, F., & Ahmadi, A. (2022). Systematic analysis and multi-objective optimization of an integrated power and freshwater production cycle. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.04.066

    Article  Google Scholar 

  • Balat, H., & Kırtay, E. (2010). Hydrogen from biomass-present scenario and future prospects. International Journal of Hydrogen Energy, 35(14), 7416–7426.

    Article  CAS  Google Scholar 

  • Ball, M., Basile, A., & Nejat Veziroglu, T. (2015). Compendium of hydrogen energy: Hydrogen use, safety and the hydrogen economy. Woodhead Publishing.

  • Balta, M. T. (2020). Thermodynamic performance assessment of boron based thermochemical water splitting cycle for renewable hydrogen production. International Journal of Hydrogen Energy, 45(60), 34579–34586.

    Article  CAS  Google Scholar 

  • Balta, M. T., Dincer, I., & Hepbasli, A. (2016). Comparative assessment of various chlorine family thermochemical cycles for hydrogen production. International Journal of Hydrogen Energy, 41(19), 7802–7813.

    Article  CAS  Google Scholar 

  • Bareiß, K., de la Rua, C., Möckl, M., & Hamacher, T. (2019). Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems. Applied Energy, 237, 862–872.

    Article  ADS  Google Scholar 

  • Bartels, J. R., Pate, M. B., & Olson, N. K. (2010). An economic survey of hydrogen production from conventional and alternative energy sources. International Journal of Hydrogen Energy, 35(16), 8371–8384.

    Article  CAS  Google Scholar 

  • Beghi, G. E. (1981). Review of thermochemical hydrogen production. International Journal of Hydrogen Energy, 6(6), 555–566.

    Article  CAS  Google Scholar 

  • Beghi, G. E. (1986). A decade of research on thermochemical hydrogen at the joint research Centre-Ispra. In Hydrogen Systems, Elsevier, pp. 153–71.

  • Bellos, E., Pavlovic, S., Stefanovic, V., Tzivanidis, C., & Nakomcic-Smaradgakis, B. B. (2019). Parametric analysis and yearly performance of a trigeneration system driven by solar-dish collectors. International Journal of Energy Research, 43(4), 1534–1546.

    Article  ADS  Google Scholar 

  • Bhandari, R., Trudewind, C. A., & Zapp, P. (2014). Life cycle assessment of hydrogen production via electrolysis–a review. Journal of Cleaner Production, 85, 151–163.

    Article  CAS  Google Scholar 

  • Bhosale, R., Kumar, A., AlMomani, F., & Gupta, R. B. (2017). Solar thermochemical ZnO/ZnSO4 water splitting cycle for hydrogen production. International Journal of Hydrogen Energy, 42(37), 23474–23483.

    Article  CAS  Google Scholar 

  • Bilgen, C., Broggi, A., & Bilgen, E. (1986). The solar Cristina process for hydrogen production. Solar Energy, 36(3), 267–280.

    Article  ADS  CAS  Google Scholar 

  • Bourne, S. (2012). The future of fuel: The future of hydrogen. Fuel Cells Bulletin, 2012(1), 12–15.

    Article  Google Scholar 

  • Brown, L. C., Besenbruch, G. E., Lentsch, R. D., Schultz, K. R., Funk, J. F., Pickard, P. S., Marshall, A. C. and Showalter, S. K. (2003). High efficiency generation of hydrogen fuels using nuclear power. General Atomics, San Diego, CA (United States).

  • Buttler, A., & Spliethoff, H. (2018). Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renewable and Sustainable Energy Reviews, 82, 2440–2454.

    Article  CAS  Google Scholar 

  • Calise, F., D’Accadia, M. D., Santarelli, M., Lanzini, A., & Ferrero, D. (2019). Solar hydrogen production: Processes. Academic Press.

    Google Scholar 

  • Camacho, M., Bensaid, S., Piras, G., Antonini, M., & Fino, D. (2017). Techno-economic analysis of green hydrogen production from biogas autothermal reforming. Clean Technologies and Environmental Policy, 19(5), 1437–1447.

    Article  Google Scholar 

  • Chambon, M., Abanades, S., & Flamant, G. (2009). Kinetic investigation of hydrogen generation from hydrolysis of SnO and Zn solar nanopowders. International Journal of Hydrogen Energy, 34(13), 5326–5336.

    Article  CAS  Google Scholar 

  • Charvin, P., Abanades, S., Flamant, G., & Lemort, F. (2007). Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production. Energy, 32(7), 1124–1133.

    Article  CAS  Google Scholar 

  • Chen, G., Xin, Tu., Homm, G., & Weidenkaff, A. (2022). Plasma pyrolysis for a sustainable hydrogen economy. Nature Reviews Materials, 7(5), 333–334.

    Article  ADS  Google Scholar 

  • Chiu, Y.-H., Lai, T.-H., Kuo, M.-Y., Hsieh, P.-Y., & Hsu, Y.-J. (2019). Photoelectrochemical cells for solar hydrogen production: Challenges and opportunities. APL Materials, 7(8), 80901.

    Article  Google Scholar 

  • Costa, L. L., & Prado, A. G. S. (2009). TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of Indigo Carmine dye. Journal of Photochemistry and Photobiology a: Chemistry, 201(1), 45–49.

    Article  CAS  Google Scholar 

  • d’Amore-Domenech, R., Santiago, O., & Leo, T. J. (2020). Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea. Renewable and Sustainable Energy Reviews, 133, 110166.

    Article  Google Scholar 

  • Das, B., Mondol, J. D., Debnath, S., Pugsley, A., Smyth, M., & Zacharopoulos, A. (2020). Effect of the absorber surface roughness on the performance of a solar air collector: An experimental investigation. Renewable Energy, 152, 567–578.

    Article  Google Scholar 

  • Das, D., Nejat, T., & Veziroglu. (2008). Advances in biological hydrogen production processes. International Journal of Hydrogen Energy, 33(21), 6046–6057.

    Article  CAS  Google Scholar 

  • Dincer, I. (2012). Green methods for hydrogen production. International Journal of Hydrogen Energy, 37(2), 1954–1971.

    Article  CAS  Google Scholar 

  • Dincer, I. (2018). Comprehensive energy systems. Elsevier.

    Google Scholar 

  • Dincer, I., & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40(34), 11094–11111.

    Article  CAS  Google Scholar 

  • Energy, US Department of 2018. https://www.Energy.Gov/Eere/Fuelcells/H2scale

  • Esmaeilion, F., Ahmadi, A., & Ehyaei, M. A. (2021a). Low-grade heat from solar ponds: Trends, perspectives, and prospects. International Journal of Ambient Energy. https://doi.org/10.1080/01430750.2021.1938672

    Article  Google Scholar 

  • Esmaeilion, F., Ahmadi, A., Hoseinzadeh, S., Aliehyaei, M., Makkeh, S. A., & Garcia, D. A. (2021b). Renewable energy desalination; a sustainable approach for water scarcity in Arid Lands. International Journal of Sustainable Engineering, 14(6), 1916–1942. https://doi.org/10.1080/19397038.2021.1948143

    Article  Google Scholar 

  • Esmaeilion, F., Soltani, M., Nathwani, J., & Al-Haq, A. (2022a). Design, analysis, and optimization of a novel poly-generation system powered by solar and wind energy. Desalination, 543, 116119.

    Article  CAS  Google Scholar 

  • Esmaeilion, F., Soltani, M., & Nathwani, J. (2022b). Assessment of a novel solar-powered polygeneration system highlighting efficiency, exergy, economic and environmental factors. Desalination, 540, 116004.

    Article  CAS  Google Scholar 

  • Esmaeilion, F., Ahmadi, A., Esmaeilion, A., & Ehyaei, M. A. (2020). The performance analysis and monitoring of grid-connected photovoltaic power plant. Current Chinese Computer Science. https://doi.org/10.2174/2665997201999200511083228

    Article  Google Scholar 

  • Fajrina, N., & Tahir, M. (2019). A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. International Journal of Hydrogen Energy, 44(2), 540–577.

    Article  CAS  Google Scholar 

  • Farbman, G. H. (1979). Hydrogen production by the westinghouse sulfur cycle process: Program status. International Journal of Hydrogen Energy, 4(2), 111–122.

    Article  CAS  Google Scholar 

  • Farooqui, A., Di Tomaso, F., Bose, A., Ferrero, D., Llorca, J., & Santarelli, M. (2019). Techno-Economic and exergy analysis of polygeneration plant for power and DME production with the integration of chemical looping CO2/H2O splitting. Energy Conversion and Management, 186, 200–219.

    Article  CAS  Google Scholar 

  • Fazelpour, F., Soltani, N., & Rosen, M. A. (2016). Economic analysis of standalone hybrid energy systems for application in Tehran, Iran. International Journal of Hydrogen Energy, 41(19), 7732–7743. https://doi.org/10.1016/j.ijhydene.2016.01.113

    Article  CAS  Google Scholar 

  • Ferraren-De Cagalitan, D. D. T., & Abundo, M. L. S. (2021). A review of biohydrogen production technology for application towards hydrogen fuel cells. Renewable and Sustainable Energy Reviews, 151, 111413.

    Article  CAS  Google Scholar 

  • Funk, J. E. (1976). Thermochemical production of hydrogen via multistage water splitting processes. International Journal of Hydrogen Energy, 1(1), 33–43.

    Article  CAS  Google Scholar 

  • Funk, J. E., & Reinstrom, R. M. (1966). Energy requirements in production of hydrogen from water. Industrial & Engineering Chemistry Process Design and Development, 5(3), 336–342.

    Article  CAS  Google Scholar 

  • Galvez, M. E., Frei, A., Albisetti, G., Lunardi, G., & Steinfeld, A. (2008). Solar hydrogen production via a two-step thermochemical process based on MgO/Mg redox reactions—thermodynamic and kinetic analyses. International Journal of Hydrogen Energy, 33(12), 2880–2890.

    Article  CAS  Google Scholar 

  • Gim, B., & Yoon, W. L. (2012). Analysis of the economy of scale and estimation of the future hydrogen production costs at on-site hydrogen refueling stations in Korea. International Journal of Hydrogen Energy, 37(24), 19138–19145.

    Article  CAS  Google Scholar 

  • Grigoriev, S. A., Pierre Millet, S. V., Korobtsev, V. I., Porembskiy, M. P., Etievant, C., Puyenchet, C., & Fateev, V. N. (2009). Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis. International Journal of Hydrogen Energy, 34(14), 5986–5991.

    Article  CAS  Google Scholar 

  • Grimm, A., de Jong, W. A., & Kramer, G. J. (2020). Renewable hydrogen production: A techno-economic comparison of photoelectrochemical cells and photovoltaic-electrolysis. International Journal of Hydrogen Energy, 45(43), 22545–22555.

    Article  CAS  Google Scholar 

  • Guban, D., Muritala, I. K., Roeb, M., & Sattler, C. (2020). Assessment of sustainable high temperature hydrogen production technologies. International Journal of Hydrogen Energy, 45(49), 26156–26165.

    Article  CAS  Google Scholar 

  • Han, X., Liu, P., Ran, R., Wang, W., Zhou, W., & Shao, Z. (2022). Non-metal fluorine doping in Ruddlesden-Popper perovskite oxide enables high-efficiency photocatalytic water splitting for hydrogen production. Materials Today Energy, 23, 100896.

    Article  CAS  Google Scholar 

  • Haryanto, A., Fernando, S., Murali, N., & Adhikari, S. (2005). Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy & Fuels, 19(5), 2098–2106.

    Article  CAS  Google Scholar 

  • Hauer, I., Balischewski, S., & Ziegler, C. (2020). Design and operation strategy for multi-use application of battery energy storage in wind farms. Journal of Energy Storage, 31, 101572.

    Article  Google Scholar 

  • Holladay, J. D., Jianli, Hu., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244–260.

    Article  CAS  Google Scholar 

  • Islam, Md. H., Burheim, O. S., & Pollet, B. G. (2019). Sonochemical and sonoelectrochemical production of hydrogen. Ultrasonics Sonochemistry, 51, 533–555.

    Article  CAS  PubMed  Google Scholar 

  • Ivy, J. (2004). Summary of Electrolytic Hydrogen Production: Milestone Completion Report. National Renewable Energy Lab., Golden, CO (US).

  • Jamali, D. H., & Noorpoor, A. (2019). Optimization of a novel solar-based multi-generation system for waste heat recovery in a cement plant. Journal of Cleaner Production, 240, 117825.

    Article  CAS  Google Scholar 

  • Kang, K.-S., Kim, C.-H., Cho, W.-C., Bae, K.-K., Kim, S.-H., & Park, C.-S. (2009). Novel two-step thermochemical cycle for hydrogen production from water using germanium oxide: KIER 4 thermochemical cycle. International Journal of Hydrogen Energy, 34(10), 4283–4290.

    Article  CAS  Google Scholar 

  • Kapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38(5), 569–582.

    Article  CAS  Google Scholar 

  • Karaca, A. E., Qureshy, A. M. M. I., & Dincer, I. (2023). An overview and critical assessment of thermochemical hydrogen production methods. Journal of Cleaner Production, 385, 135706.

    Article  CAS  Google Scholar 

  • Kerboua, K., & Hamdaoui, O. (2019). Energetic challenges and sonochemistry: A new alternative for hydrogen production? Current Opinion in Green and Sustainable Chemistry, 18, 84–89.

    Article  Google Scholar 

  • Keunecke, M., Meier, A., & Palumbo, R. (2004). Solar thermal decomposition of Zinc Oxide: An initial investigation of the recombination reaction in the temperature range 1100–1250K. Chemical Engineering Science, 59(13), 2695–2704.

    Article  ADS  CAS  Google Scholar 

  • Kim, J. H., Hansora, D., Sharma, P., Jang, J.-W., & Lee, J. S. (2019). Toward practical solar hydrogen production–an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews, 48(7), 1908–1971.

    Article  CAS  PubMed  Google Scholar 

  • Kodama, T., & Gokon, N. (2007). Thermochemical cycles for high-temperature solar hydrogen production. Chemical Reviews, 107(10), 4048–4077.

    Article  CAS  PubMed  Google Scholar 

  • Korányi, T. I., Németh, M., Beck, A., & Horváth, A. (2022). Recent advances in methane pyrolysis: Turquoise hydrogen with solid carbon production. Energies, 15(17), 6342.

    Article  Google Scholar 

  • Kumar, G., Sivagurunathan, P., Pugazhendhi, A., Thi, N. B. D., Zhen, G., Chandrasekhar, K., & Kadier, A. (2017). A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options. Energy Conversion and Management, 141, 390–402.

    Article  CAS  Google Scholar 

  • Lee, B., Chae, H., Choi, N. H., Moon, C., Moon, S., & Lim, H. (2017). Economic evaluation with sensitivity and profitability analysis for hydrogen production from water electrolysis in Korea. International Journal of Hydrogen Energy, 42(10), 6462–6471.

    Article  CAS  Google Scholar 

  • Lee, B., Heo, J., Kim, S., Sung, C., Moon, C., Moon, S., & Lim, H. (2018). Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations. Energy Conversion and Management, 162, 139–144.

    Article  CAS  Google Scholar 

  • Lee, B. J., No, H. C., Yoon, H. J., Jin, H. G., Kim, Y. S., & Lee, J. I. (2009). Development of a flowsheet for iodine-sulfur thermo-chemical cycle based on optimized bunsen reaction. International Journal of Hydrogen Energy, 34(5), 2133–2143.

    Article  CAS  Google Scholar 

  • Lei, J.-M., Peng, Q.-X., Luo, S.-P., Liu, Y., Zhan, S.-Z., & Ni, C.-L. (2018). A Nickel complex, an efficient cocatalyst for both electrochemical and photochemical driven hydrogen production from water. Molecular Catalysis, 448, 10–17.

    Article  CAS  Google Scholar 

  • Letcher, T. M., Law, R., & Reay, D. (2016). Storing energy: With special reference to renewable energy sources. Vol. 86. Elsevier Amsterdam.

  • Li, R. (2017). Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions. Chinese Journal of Catalysis, 38(1), 5–12.

    Article  Google Scholar 

  • Li, Z. X., Ehyaei, M. A., Ahmadi, A., Jamali, D. H., Kumar, R., & Abanades, S. (2020). Energy, exergy and economic analyses of new coal-fired cogeneration hybrid plant with wind energy resource. Journal of Cleaner Production, 269, 122331.

    Article  CAS  Google Scholar 

  • Liberatore, R., Lanchi, M., Giaconia, A., & Tarquini, P. (2012). Energy and economic assessment of an industrial plant for the hydrogen production by water-splitting through the sulfur-iodine thermochemical cycle powered by concentrated solar energy. International Journal of Hydrogen Energy, 37(12), 9550–9565.

    Article  CAS  Google Scholar 

  • Lin, M.-Y., & Hourng, L.-W. (2014). Ultrasonic wave field effects on hydrogen production by water electrolysis. Journal of the Chinese Institute of Engineers, 37(8), 1080–1089.

    Article  CAS  Google Scholar 

  • Mahmoudan, A., Esmaeilion, F., Hoseinzadeh, S., Soltani, M., Ahmadi, P., & Rosen, M. (2022). A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization. Applied Energy, 308, 118399.

    Article  CAS  Google Scholar 

  • Makkeh, S. A., Ahmadi, A., Esmaeilion, F., & Ehyaei, M. A. (2020). Energy, exergy and exergoeconomic optimization of a cogeneration system integrated with parabolic trough collector-wind turbine with desalination. Journal of Cleaner Production, 273, 123122. https://doi.org/10.1016/j.jclepro.2020.123122

    Article  CAS  Google Scholar 

  • Mao, Xi., Li, W. Z., Yuan, Y., & Yang, L. W. (2022). Numerical analysis of methanol steam reforming reactor heated by catalytic combustion for hydrogen production. International Journal of Hydrogen Energy, 47(32), 14469–14482.

    Article  CAS  Google Scholar 

  • Mao, Y., Gao, Y., Dong, W., Han, Wu., Song, Z., Zhao, X., Sun, J., & Wang, W. (2020). Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide–a review. Applied Energy, 267, 114860.

    Article  CAS  Google Scholar 

  • Marques, J. G. O., Costa, A. L., & Pereira, C. (2020). Exergy analysis for the Na-OH (Sodium-Oxygen-Hydrogen) thermochemical water splitting cycle. International Journal of Hydrogen Energy, 45(20), 11424–11437.

    Article  CAS  Google Scholar 

  • Mehrpooya, M., & Habibi, R. (2020). A review on hydrogen production thermochemical water-splitting cycles. Journal of Cleaner Production, 275, 123836.

    Article  CAS  Google Scholar 

  • Mei, B., Han, K., & Mul, G. (2018). Driving surface redox reactions in heterogeneous photocatalysis: The active state of illuminated semiconductor-supported nanoparticles during overall water-splitting. ACS Catalysis, 8(10), 9154–9164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merouani, S., Hamdaoui, O., Rezgui, Y., & Guemini, M. (2016). Computational engineering study of hydrogen production via ultrasonic cavitation in water. International Journal of Hydrogen Energy, 41(2), 832–844.

    Article  CAS  Google Scholar 

  • Millet, P. (2015). Hydrogen production by polymer electrolyte membrane water electrolysis. In Compendium of Hydrogen Energy, Elsevier, pp. 255–86.

  • Mostafaeipour, A., Rezaei, M., Moftakharzadeh, A., Qolipour, M., & Salimi, M. (2019). Evaluation of hydrogen production by wind energy for agricultural and industrial sectors. International Journal of Hydrogen Energy, 44(16), 7983–7995.

    Article  CAS  Google Scholar 

  • Navas-Anguita, Z., García-Gusano, D., Dufour, J., & Iribarren, D. (2020). Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport. Applied Energy, 259, 114121.

    Article  CAS  Google Scholar 

  • Ng, B.-J., Putri, L. K., Kong, X. Y., Teh, Y. W., Pasbakhsh, P., & Chai, S.-P. (2020). Z-scheme photocatalytic systems for solar water splitting. Advanced Science, 7(7), 1903171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni, M., Leung, D. Y. C., Leung, M. K. H., & Sumathy, K. J. F. P. T. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 87(5), 461–472.

    Article  CAS  Google Scholar 

  • Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews, 67, 597–611.

    Article  CAS  Google Scholar 

  • Noorpoor, A. R., Hamedi, D., & Hashemian, N. (2017). Optimization of parabolic trough solar collectors integrated with two stage rankine cycle. Journal of Solar Energy Research, 2(2), 61–66.

    Google Scholar 

  • Norman, J. H., Besenbruch, G. E., Brown, L. C., O’keefe, D. R., and Allen, C. L. (1982). Thermochemical water-splitting cycle, bench-scale investigations, and process engineering. Final Report, February 1977-December 31, 1981. GA Technologies, Inc., San Diego, CA (USA).

  • Orhan, M. F., Dincer, I., & Rosen, M. A. (2012). Efficiency comparison of various design schemes for copper-chlorine (Cu–Cl) hydrogen production processes using aspen plus software. Energy Conversion and Management, 63, 70–86.

    Article  CAS  Google Scholar 

  • Ozcan, H., & Dincer, I. (2014). Performance investigation of magnesium-chloride hybrid thermochemical cycle for hydrogen production. International Journal of Hydrogen Energy, 39(1), 76–85.

    Article  CAS  Google Scholar 

  • Parthasarathy, P., & SheebaNarayanan, K. (2014). Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield–a review. Renewable Energy, 66, 570–579.

    Article  CAS  Google Scholar 

  • Policastro, G., Cesaro, A., & Fabbricino, M. (2022). Photo-fermentative hydrogen production from cheese whey: Engineering of a mixed culture process in a semi-continuous, tubular photo-bioreactor. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.07.063

    Article  Google Scholar 

  • Rashwan, S. S., Dincer, I., Mohany, A., & Pollet, B. G. (2019). The sono-hydro-gen process (Ultrasound Induced Hydrogen Production): Challenges and opportunities. International Journal of Hydrogen Energy, 44(29), 14500–14526.

    Article  CAS  Google Scholar 

  • Ratlamwala, T. A. H., & Dincer, I. (2013). Development of a geothermal based integrated system for building multigenerational needs. Energy and Buildings, 62, 496–506.

    Article  Google Scholar 

  • Ratlamwala, T. A. H., Dincer, I., and Gadalla, M. A. (2013). Comparative environmental impact and sustainability assessments of hydrogen and cooling production systems. In Causes, Impacts and Solutions to Global Warming, Springer, pp. 389–408.

  • Rezaei, M., Naghdi-Khozani, N., & Jafari, N. (2020). Wind energy utilization for hydrogen production in an underdeveloped country: An economic investigation. Renewable Energy, 147, 1044–1057.

    Article  Google Scholar 

  • Riccardi, J., Massimo, S., Fastelli, I. & Smitkova, M. (2011). Modelling of westinghouse and sulphur-iodine water splitting cycles for hydrogen production, Vol.1, 231–245.

  • Safari, F., & Dincer, I. (2020). A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Conversion and Management, 205, 112182.

    Article  CAS  Google Scholar 

  • Safari, F., Javani, N., & Yumurtaci, Z. (2018). Hydrogen production via supercritical water gasification of almond shell over algal and agricultural hydrochars as catalysts. International Journal of Hydrogen Energy, 43(2), 1071–1080.

    Article  CAS  Google Scholar 

  • Sakurai, M., Bilgen, E., Tsutsumi, A., & Yoshida, K. (1996a). Adiabatic UT-3 thermochemical process for hydrogen production. International Journal of Hydrogen Energy, 21(10), 865–870.

    Article  CAS  Google Scholar 

  • Sakurai, M., Bilgen, E., Tsutsumi, A., & Yoshida, K. (1996b). Solar UT-3 thermochemical cycle for hydrogen production. Solar Energy, 57(1), 51–58.

    Article  ADS  CAS  Google Scholar 

  • Salkuyeh, Y. K., Saville, B. A., & MacLean, H. L. (2017). Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies. International Journal of Hydrogen Energy, 42(30), 18894–18909.

    Article  Google Scholar 

  • Schunk, L. O., Lipiński, W., & Steinfeld, A. (2009). Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO—experimental validation at 10 KW and scale-up to 1 MW. Chemical Engineering Journal, 150(2–3), 502–508.

    Article  CAS  Google Scholar 

  • Shi, C., Labbaf, B., Mostafavi, E., & Mahinpey, N. (2020). Methanol production from water electrolysis and tri-reforming: Process design and technical-economic analysis. Journal of CO2 Utilization, 38, 241–251.

    Article  Google Scholar 

  • Staffell, I., Scamman, D., Abad, A. V., Balcombe, P., Dodds, P. E., Ekins, P., Shah, N., & Ward, K. R. (2019). The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12(2), 463–491.

    Article  CAS  Google Scholar 

  • Steinfeld, A. (2005). Solar thermochemical production of hydrogen––a review. Solar Energy, 78(5), 603–615.

    Article  ADS  CAS  Google Scholar 

  • Suleman, F., Dincer, I., & Agelin-Chaab, M. (2016). Comparative impact assessment study of various hydrogen production methods in terms of emissions. International Journal of Hydrogen Energy, 41(19), 8364–8375.

    Article  CAS  Google Scholar 

  • Tahir, F., Saeed, M. A., & Ali, U. (2023). Biomass energy perspective in Pakistan based on chemical looping gasification for hydrogen production and power generation. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.01.247

    Article  Google Scholar 

  • Tamaura, Y., Steinfeld, A., Kuhn, P., & Ehrensberger, K. (1995). Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle. Energy, 20(4), 325–330.

    Article  CAS  Google Scholar 

  • Tseng, P., Lee, J., & Friley, P. (2005). A hydrogen economy: Opportunities and challenges. Energy, 30(14), 2703–2720.

    Article  Google Scholar 

  • Tzivanidis, C., Bellos, E., & Antonopoulos, K. A. (2016). Energetic and financial investigation of a stand-alone solar-thermal organic rankine cycle power plant. Energy Conversion and Management, 126, 421–433.

    Article  CAS  Google Scholar 

  • Uba, F., Essandoh, E. O., Akolgo, G. A., & Dzikunu, C. N. (2020). Thermal performance of flat plate solar collectors for humid and unpredicted weather using air properties and energy method. International Journal of Technology and Management Research, 5(4), 30–49.

    Article  Google Scholar 

  • Vishnevetsky, I. & Epstein, M. (2009). Tin as a possible candidate for solar thermochemical redox process for hydrogen production., Vol. 131, pp. 7–15.

  • Xiao, L., Shuang-Ying, Wu., & Li, Y.-R. (2012). Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions. Renewable Energy, 41, 1–12.

    Article  Google Scholar 

  • Xu, S., Yang, X.-H., Tang, S.-S., & Liu, J. (2019). Liquid metal activated hydrogen production from waste aluminum for power supply and its life cycle assessment. International Journal of Hydrogen Energy, 44(33), 17505–17514.

    Article  CAS  Google Scholar 

  • Yadav, D., & Banerjee, R. (2020). Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process. Applied Energy, 262, 114503.

    Article  CAS  Google Scholar 

  • Yang, Z., Jiang, Y., Zhang, W., Ding, Y., Jiang, Y., Yin, J., Zhang, P., & Luo, H. (2019). Solid-state, low-cost, and green synthesis and robust photochemical hydrogen evolution performance of ternary TiO2/MgTiO3/C photocatalysts. Iscience, 14, 15–26.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, J., Kraussler, M., Benedikt, F., & Hofbauer, H. (2017). Techno-economic assessment of hydrogen production based on dual fluidized bed biomass steam gasification, biogas steam reforming, and alkaline water electrolysis processes. Energy Conversion and Management, 145, 278–292.

    Article  CAS  Google Scholar 

  • Yin, Y., & Wang, J. (2015). Biohydrogen production using waste activated sludge disintegrated by gamma irradiation. Applied Energy, 155, 434–439.

    Article  ADS  CAS  Google Scholar 

  • Yılmaz, F., Tolga, M., & Balta. (2017). Energy and exergy analyses of hydrogen production step in boron based thermochemical cycle for hydrogen production. International Journal of Hydrogen Energy, 42(4), 2485–2491.

    Article  Google Scholar 

  • Zamfirescu, C., Naterer, G. F., & Dincer, I. (2011). Vapor compression CuCl heat pump integrated with a thermochemical water splitting cycle. Thermochimica Acta, 512(1–2), 40–48.

    Article  CAS  Google Scholar 

  • Zhang, Y., Nie, T., Qiu, K., Zhou, J., Wang, Z., Liu, J., & Cen, K. (2016). Simplification of the zinc-sulfur-iodine thermochemical cycle for the production of H2 and CO. International Journal of Hydrogen Energy, 41(1), 94–103.

    Article  Google Scholar 

  • Zhao, G., Kraglund, M. R., Frandsen, H. L., Wulff, A. C., Jensen, S. H., Chen, M., & Graves, C. R. (2020). Life cycle assessment of H2O electrolysis technologies. International Journal of Hydrogen Energy, 45(43), 23765–23781.

    Article  CAS  Google Scholar 

  • Zonarsaghar, A., Mousavi-Kamazani, M., & Zinatloo-Ajabshir, S. (2022). Sonochemical synthesis of CeVO4 nanoparticles for electrochemical hydrogen storage. International Journal of Hydrogen Energy, 47(8), 5403–5417.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Das.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, S., Esmaeilion, F., Rabanian, A. et al. Sustainable hydrogen production through water splitting: a comprehensive review. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04699-y

Keywords

Navigation