Skip to main content
Log in

Optimal pricing and replenishment decisions for non-instantaneous deteriorating items with a fixed lifetime and partial backordering under carbon regulations

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Increasing strict carbon regulations enforced by regulators are encouraging companies to seek better ways to manage inventories with a desire to reduce carbon emissions from their operations. This work illustrates an inventory model to obtain the retailer’s optimal replenishment policy for non-instantaneous deteriorating items with fixed lifetime and partial backordering under cap-and-price, cap-and-trade, and carbon tax regulations with the goal of maximizing a retailer’s profit while simultaneously reducing total carbon emissions. To investigate the work from a more general perspective, the market demand structure of perishable products is considered deterministic in nature and is reliant on both the selling price and stock level, while the shortage of items is a decreasing function of waiting time up to the next replenishment. This study examines, for the first time, the best replenishment decisions for non-instantaneous deteriorating items with an expiration date after characterizing their properties theoretically under carbon regulations. Integrating all possible cases of the optimal solutions from theoretical outcomes, different numerical examples are demonstrated, and finally, several management insights are provided by investigating the changing pattern of the optimal strategies for variation in the system parameters. The derived outcomes highlight that the cap-and-price policy performs well both economically and environmentally for the inventory decision-maker when the penalty is less than or equal to the reward for each unit of carbon emission. Furthermore, in cap-and-price regulation, the total profit is increased by \(3.14\%\), \(8.10\%,\) and \(1.63\%\) from cap-and-trade, carbon tax, and without carbon regulation, respectively, and the total amount of emission is decreased by 5.38% from cap-and-trade and carbon tax regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Ahmadi, E., Masel, D. T., Hostetler, S., Maihami, R., & Ghalehkhondabi, I. (2020). A centralized stochastic inventory control model for perishable products considering age-dependent purchase price and lead time. TOP, 28(1), 231–269.

    Article  Google Scholar 

  • Astanti, R. D., Daryanto, Y., & Dewa, P. K. (2022). Low-carbon supply chain model under a vendor-managed inventory partnership and carbon cap-and-trade policy. Journal of Open Innovation: Technology, Market, and Complexity, 8(1), 30.

    Article  Google Scholar 

  • Cambini, A., & Martein, L. (2009). Generalized convexity and optimization: Theory and application. Springer-Verlag.

    Google Scholar 

  • Chang, C. T., Cheng, M. C., & Ouyang, L. Y. (2015). Optimal pricing and ordering policies for non-instantaneously deteriorating items under order-size-dependent delay in payments. Applied Mathematical Modelling, 39(2), 747–763.

    Article  Google Scholar 

  • Chen, X., Benjaafar, S., & Elomri, A. (2013). The carbon-constrained EOQ. Operations Research Letters, 41(2), 172–179.

    Article  Google Scholar 

  • Chen, X., Gong, W., & Wang, F. (2017). Managing carbon footprints under the trade credit. Sustainability, 9(7), 1235.

    Article  Google Scholar 

  • Choudhury, M., De, S. K., & Mahata, G. C. (2022a). Inventory decision for products with deterioration and expiration dates for pollution-based supply chain model in fuzzy environments. RAIRO-Operations Research, 56(1), 475–500.

  • Choudhury, M., Mahato, C., & Mahata, G. C. (2022b). An integrated inventory model with capacity constraint under order-size dependent trade credit, all-unit discount and partial backordering. RAIRO-Operations Research, 56(3), 1593–1622.

    Article  Google Scholar 

  • Choudhury, M., De, S. K., & Mahata, G. C. (2022c). Pollution-sensitive integrated production-inventory management for deteriorating items with quality loss and quantity loss with expiration date. International Journal of Systems Science: Operations & Logistics, 9(4), 546–568.

    Google Scholar 

  • Choudhury, M., De, S. K., & Mahata, G. C. (2022d). A pollution-sensitive multistage production-inventory model for deteriorating items considering expiration date under Stackelberg game approach. Environment, Development and Sustainability, 1–38.

  • Dai, Z., Gao, K., & Zheng, X. (2022). Optimizing two multi-echelon inventory systems for perishable products with price and stock dependent demand in supply chain. Scientia Iranica, 29(1), 320–342.

    Google Scholar 

  • Datta, T. K., & Paul, K. (2001). An inventory system with stock-dependent, price-sensitive demand rate. Production Planning & Control, 12(1), 13–20.

    Article  Google Scholar 

  • De, S. K., & Mahata, G. C. (2020). A production inventory supply chain model with partial backordering and disruption under triangular linguistic dense fuzzy lock set approach. Soft Computing, 24(7), 5053–5069.

    Article  Google Scholar 

  • Dye, C. Y., & Yang, C. T. (2015). Sustainable trade credit and replenishment decisions with credit-linked demand under carbon emission constraints. European Journal of Operational Research, 244(1), 187–200.

    Article  Google Scholar 

  • Elkins, P., & Baker, T. (2001). Carbon taxes and carbon emissions trading. Journal of Economic Surveys, 15(3), 325–376.

  • Fan, Y., Wang, M., & Zhao, L. (2018). Production-inventory and emission reduction investment decision under carbon cap-and-trade policy. RAIRO-Operations Research, 52(4–5), 1043–1067.

    Article  Google Scholar 

  • Ghare, I. P. M., & Schrader, G. F. (1963). A model for exponentially decaying inventory. Journal of Industrial Engineering, 14(238), 243.

    Google Scholar 

  • Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134(1), 1–16.

    Article  Google Scholar 

  • He, P., Zhang, W., Xu, X., & Bian, Y. (2015). Production lot-sizing and carbon emissions under cap-and-trade and carbon tax regulations. Journal of Cleaner Production, 103, 241–248.

    Article  Google Scholar 

  • Jaggi, C. K., Tiwari, S., & Goel, S. K. (2017). Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand and two storage facilities. Annals of Operations Research, 248(1), 253–280.

    Article  Google Scholar 

  • Janssen, L., Claus, T., & Sauer, J. (2016). Literature review of deteriorating inventory models by key topics from 2012 to 2015. International Journal of Production Economics, 182, 86–112.

    Article  Google Scholar 

  • Jiang, Z. Z., He, N., Xiao, L., & Sheng, Y. (2019). Government subsidy provision in biomass energy supply chains. Enterprise Information Systems, 13(10), 1367–1391.

    Article  Google Scholar 

  • Levin, R. I., Lamone, R. P., Kottas, J. F., & McLaughlin, C. P. (1972). Production operations management: Contemporary policy for managing operating systems. McGraw-Hill.

    Google Scholar 

  • Mahato, C., & Mahata, G. C. (2021a). Sustainable ordering policies with capacity constraint under order-size-dependent trade credit, all-units discount, carbon emission, and partial backordering. Process Integration and Optimization for Sustainability, 5(4), 875–903.

    Article  Google Scholar 

  • Mahato, C., & Mahata, G. C. (2021b). Optimal inventory policies for deteriorating items with expiration date and dynamic demand under two-level trade credit. Opsearch, 58(4), 994–1017.

    Article  Google Scholar 

  • Mahato, F., Mahato, C., & Mahata, G. C. (2022). Sustainable optimal production policies for an imperfect production system with trade credit under different carbon emission regulations. Environment, Development and Sustainability, 1–27.

  • Mahata, G. C. (2012). An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade credit policy in supply chain. Expert Systems with Applications, 39(3), 3537–3550.

    Article  Google Scholar 

  • Mahata, G. C. (2015a). Partial trade credit policy of retailer in economic order quantity models for deteriorating items with expiration dates and price sensitive demand. Journal of Mathematical Modelling and Algorithms in Operations Research, 14(4), 363–392.

    Article  Google Scholar 

  • Mahata, G. C. (2015b). Retailer’s optimal credit period and cycle time in a supply chain for deteriorating items with up-stream and down-stream trade credits. Journal of Industrial Engineering International, 11(3), 353–366.

    Article  Google Scholar 

  • Mahata, G. C. (2016). Optimal ordering policy with trade credit and variable deterioration for fixed lifetime products. International Journal of Operational Research, 25(3), 307–326.

    Article  Google Scholar 

  • Mahata, G. C. (2017). A production-inventory model with imperfect production process and partial backlogging under learning considerations in fuzzy random environments. Journal of Intelligent Manufacturing, 28(4), 883–897.

    Article  Google Scholar 

  • Maihami, R., & Kamalabadi, I. N. (2012). Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. International Journal of Production Economics, 136(1), 116–122.

    Article  Google Scholar 

  • Maihami, R., & Karimi, B. (2014). Optimizing the pricing and replenishment policy for non-instantaneous deteriorating items with stochastic demand and promotional efforts. Computers & Operations Research, 51, 302–312.

    Article  Google Scholar 

  • Mashud, A., Khan, M., Uddin, M., & Islam, M. (2018). A non-instantaneous inventory model having different deterioration rates with stock and price dependent demand under partially backlogged shortages. Uncertain Supply Chain Management, 6(1), 49–64.

    Article  Google Scholar 

  • Mishra, U., Cárdenas-Barrón, L. E., Tiwari, S., Shaikh, A. A., & Treviño-Garza, G. (2017). An inventory model under price and stock dependent demand for controllable deterioration rate with shortages and preservation technology investment. Annals of Operations Research, 254(1), 165–190.

    Article  Google Scholar 

  • Mishra, U., Wu, J. Z., Tsao, Y. C., & Tseng, M. L. (2020). Sustainable inventory system with controllable non-instantaneous deterioration and environmental emission rates. Journal of Cleaner Production, 244, 118807.

    Article  Google Scholar 

  • Mishra, U., Wu, J. Z., & Tseng, M. L. (2019). Effects of a hybrid-price-stock dependent demand on the optimal solutions of a deteriorating inventory system and trade credit policy on re-manufactured product. Journal of Cleaner Production, 241, 118282.

    Article  Google Scholar 

  • Montgomery, D. C., Bazaraa, M. S., & Keswani, A. K. (1973). Inventory models with a mixture of backorders and lost sales. Naval Research Logistics Quarterly, 20, 255–263.

    Article  Google Scholar 

  • Pando, V., San-José, L. A., Sicilia, J., & Alcaide-Lopez-de-Pablo, D. (2021). Maximization of the return on inventory management expense in a system with price-and stock-dependent demand rate. Computers & Operations Research, 127, 105134.

    Article  Google Scholar 

  • Paul, A., & Giri, B. C. (2022). Green sustainable supply chain under cap-and-trade regulation involving government introspection. RAIRO-Operations Research, 56(2), 769–794.

    Article  Google Scholar 

  • Qin, J., Bai, X., & Xia, L. (2015). Sustainable Trade credit and replenishment policies under the cap-and-trade and carbon tax regulations. Sustainability, 7(12), 16340–16361.

    Article  Google Scholar 

  • Raafat, F. F., Wolfe, P. M., & Eldin, H. K. (1991). An inventory model for deteriorating items. Computers & Industrial Engineering, 20(1), 89–94.

    Article  Google Scholar 

  • Sepehri, A., Mishra, U., Tseng, M. L., & Sarkar, B. (2021). Joint pricing and inventory model for deteriorating items with maximum lifetime and controllable carbon emissions under permissible delay in payments. Mathematics, 9(5), 470.

  • Shah, N. H., Rabari, K., & Patel, E. (2022). Greening efforts and deteriorating inventory policies for price-sensitive stock-dependent demand. International Journal of Systems Science: Operations & Logistics, 10(1), 1–7.

  • Shah, N. H., Soni, H. N., & Patel, K. A. (2013). Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates. Omega, 41(2), 421–430.

    Article  Google Scholar 

  • Sharma, H. B., Vanapalli, K. R., Cheela, V. S., Ranjan, V. P., Jaglan, A. K., Dubey, B., & Bhattacharya, J. (2020). Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resources, Conservation and Recycling, 162, 105052.

    Article  Google Scholar 

  • Taleizadeh, A. A., Aliabadi, L., & Thaichon, P. (2022). A sustainable inventory system with price-sensitive demand and carbon emissions under partial trade credit and partial backordering. Operational Research, 1–46.

  • Teng, J. T., & Chang, C. T. (2005). Economic production quantity models for deteriorating items with price-and stock-dependent demand. Computers & Operations Research, 32(2), 297–308.

    Article  Google Scholar 

  • Tiwari, S., Daryanto, Y., & Wee, H. M. (2018). Sustainable inventory management with deteriorating and imperfect quality items considering carbon emission. Journal of Cleaner Production, 192, 281–292.

    Article  Google Scholar 

  • Whitin, T. M. (1955). Inventory control and price theory. Management Science, 2(1), 61–68.

    Article  Google Scholar 

  • Wu, K. S., Ouyang, L. Y., & Yang, C. T. (2006). An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics, 101(2), 369–384.

    Article  Google Scholar 

  • Yu, C., Qu, Z., Archibald, T. W., & Luan, Z. (2020). An inventory model of a deteriorating product considering carbon emissions. Computers & Industrial Engineering, 148, 106694.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Editor-in-Chief and anonymous referees for their valuable suggestions to improve the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gour Chandra Mahata.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$\xi = 1 + m - t,\;\psi = 1 + m - t_{d} ,\;\omega = \frac{\psi }{\chi },\;\omega_{1} = \frac{\psi }{{\chi_{1} }},\;\kappa_{1} = \left( {1 + \beta + \beta m} \right),$$
$$\kappa_{2} = \left( {6\beta m^{2} + 12\beta m - 18m + 6\beta - 18} \right),\;\kappa_{3} = \left( {9 + 3\beta + 3\beta m} \right),\;\kappa_{4} = \left( {3 - \beta - \beta m} \right),$$
$$\kappa_{5} = \left( {1 - \beta - \beta m} \right),\;\kappa_{6} = \left( {2 - \beta - \beta m} \right),\;\sigma_{1} = \left( {e^{{ - \beta t_{1} }} - e^{{ - \beta t_{d} }} } \right),\;\sigma_{2} = \left( {t_{1} e^{{ - \beta t_{1} }} - t_{d} e^{{ - \beta t_{d} }} } \right),$$
$$\sigma_{3} = \left( {t_{1}^{2} e^{{ - \beta t_{1} }} - t_{d}^{2} e^{{ - \beta t_{d} }} } \right),\;\sigma_{4} = (c_{1} + \tau .h_{e} - p\beta )\left( {1 - e^{{ - \beta t_{d} }} } \right) + \beta \left( {c_{2} e^{{ - \beta t_{d} }} + c + \tau .c_{e} } \right),$$
$$\sigma_{5} = e^{{ - \beta t_{1} }} - \beta t_{1} e^{{ - \beta t_{1} }} ,\;\sigma_{6} = 1 - \beta t_{1} - e^{{ - \beta t_{1} }} ,\;\chi = 1 + m - t_{1} ,\;\chi_{1} = 1 + m - x,$$
$$\chi_{2} = \left( {e^{ - \beta x} - e^{{ - \beta t_{d} }} } \right),\;\chi_{3} = \left( {xe^{ - \beta x} - t_{d} e^{{ - \beta t_{d} }} } \right),\;\chi_{4} = \left( {x^{2} e^{ - \beta x} - t_{d}^{2} e^{{ - \beta t_{d} }} } \right),$$
$$\chi_{5} = \left( {2xe^{ - \beta x} - \beta x^{2} e^{ - \beta x} } \right),\;\chi_{6} = \left( {e^{ - \beta x} - \beta xe^{ - \beta x} } \right),\;\chi_{7} = \left( { - \beta - \beta m + \beta x} \right),$$
$$\xi_{8} = (c_{1} + \tau .h_{e} - p\beta )\left( {\frac{{1 - e^{{ - \beta t_{d} }} }}{\beta }} \right) + c_{2} e^{{ - \beta t_{d} }} + c + \tau .c_{e} ,$$
$$\chi_{8} = - \beta \kappa_{5} e^{ - \beta x} + \beta \chi_{6} - \beta^{2} \chi_{1} \left( {1 - \beta x - e^{ - \beta x} } \right)\left( {1 + {\text{ln}}\chi_{1} } \right) + \beta^{2} \chi_{1} \left( {e^{ - \beta x} - \beta \chi_{1} - 1 + \beta x - e^{ - \beta x} \chi_{7} } \right){\text{ln}}\chi_{1} ,$$
$$\chi_{9} = \frac{{\kappa_{1} }}{{\beta^{2} \chi_{1} }}\left( {\chi_{2} \kappa_{5} + \beta \chi_{1} \left( {\beta \chi_{1} \left( {1 - \beta x} \right) + \chi_{7} e^{ - \beta x} } \right){\text{ln}}\chi_{1} + \beta \chi_{3} } \right),$$
$$\chi_{10} = \kappa_{2} + 2\kappa_{3} x - 12\beta x^{2} + 6\chi_{1} \left( {\kappa_{4} - 2\beta x} \right) + 12\beta \chi_{1}^{2} {\text{ln}}\chi_{1} + 12\chi_{1} \left( {\kappa_{4} - 2\beta x} \right){\text{ln}}\chi_{1} ,$$
$$\varrho_{1} = \left\{ {\begin{array}{*{20}c} { - (c_{1} + \tau \cdot h_{e} - \beta c_{2} - p\beta )\left\{ {\begin{array}{*{20}c} {e^{ - \beta x} \left( {1 - \beta x - \kappa_{5} } \right)\left( {\frac{{\kappa_{1} }}{{\chi_{1} \beta }} - 1} \right) + \frac{1}{{\beta^{2} \chi_{1}^{2} }}\left( {\kappa_{5} \chi_{2} + \beta \chi_{3} } \right)} \\ { - \kappa_{1} \left( {1 - \beta x - e^{ - \beta x} } \right)\left\{ {1 + \ln \chi_{1} } \right\} - \kappa_{1} \chi_{1} \beta \ln \chi_{1} \left\{ {1 + e^{ - \beta x} } \right\}} \\ \end{array} } \right\}} \\ { - \left\{ {(c_{1} + \tau \cdot h_{e} - p\beta )\left( {\frac{{1 - e^{{ - \beta t_{d} }} }}{\beta }} \right) + c_{2} e^{{ - \beta t_{d} }} + c + \tau \cdot c_{e} } \right\}\left( {\frac{{\left( {1 + \beta x} \right)}}{{\chi_{1}^{2} }} + \frac{\beta }{{\chi_{1} }}} \right)} \\ \end{array} } \right\}$$
$$\pi = \left( {t_{1} - t_{d} } \right)\kappa_{2} + \left( {t_{1}^{2} - t_{d}^{2} } \right)\kappa_{3} - 4\beta \left( {t_{1}^{3} - t_{d}^{3} } \right) - 6\chi^{2} \left( {\kappa_{4} - 2\beta t_{1} } \right){\text{ln}}\chi + 6\psi^{2} \left( {\kappa_{4} - 2\beta t_{d} } \right){\text{ln}}\psi ,$$
$$\pi_{1} = \left( {x - t_{d} } \right)\kappa_{2} + \left( {x^{2} - t_{d}^{2} } \right)\kappa_{3} - 4\beta \left( {x^{3} - t_{d}^{3} } \right) - 6\chi_{1}^{2} \left( {\kappa_{4} - 2\beta x} \right){\text{ln}}\chi_{1} + 6\psi^{2} \left( {\kappa_{4} - 2\beta t_{d} } \right){\text{ln}}\psi ,$$
$$\pi_{2} = t_{1} \kappa_{2} + t_{1}^{2} \kappa_{2} - 43t_{1}^{3} - 6\xi^{2} {\text{ln}}\chi \left( {\kappa_{4} - 2\beta t_{1} } \right) + 6\kappa_{4} \left( {1 + m} \right)^{2} \ln \left( {1 + m} \right),$$
$$\pi_{3} = \left( {e^{{ - \beta t_{1} }} - 1} \right)\kappa_{5} + \beta t_{1} e^{{ - \beta t_{1} }} ,\;\eta = \left( {\frac{{c_{3} }}{\delta } + c_{4} } \right),$$
$$\mu = \left[ {\begin{array}{*{20}c} {p + c_{2} - (c_{1} + \tau \cdot h_{e} - \beta c_{2} - p\beta )\left\{ {\frac{1}{\beta }\left( {\kappa_{5} \kappa_{6} + \beta \sigma_{2} } \right)\left( {\frac{{\kappa_{1} }}{\chi \beta } - 1} \right) + \kappa_{1} \chi \sigma_{6} \ln \chi } \right\}} \\ { - \left\{ {(c_{1} + \tau \cdot h_{e} - p\beta )\left( {\frac{{1 - e^{{ - \beta t_{d} }} }}{\beta }} \right) + c_{2} e^{{ - \beta t_{d} }} + c + \tau \cdot c_{e} } \right\}\frac{{(1 + \beta t_{1} )}}{\chi }\psi } \\ \end{array} } \right],$$
$$\mu_{1} = \left[ {\begin{array}{*{20}c} {p + c_{2} - (c_{1} + \tau \cdot h_{e} - \beta c_{2} - p\beta )\left\{ {\begin{array}{*{20}c} {\frac{1}{\beta }\left( {\kappa_{5} \chi_{2} + \beta \chi_{3} } \right)\left( {\frac{{\kappa_{1} }}{{\beta \chi_{1} }} - 1} \right)} \\ { + \kappa_{1} \chi_{1} \ln \chi_{1} \left( {1 - \beta x - e^{ - \beta x} } \right)} \\ \end{array} } \right\}} \\ {\quad - \left\{ {(c_{1} + \tau .h_{e} - p\beta )\left( {\frac{{1 - e^{{ - \beta t_{d} }} }}{\beta }} \right) + c_{2} e^{{ - \beta t_{d} }} + c + \tau \cdot c_{e} } \right\}\frac{{\left( {1 + \beta x} \right)}}{{\chi_{1} }}\psi } \\ \end{array} } \right],$$
$$\nu = \left[ {\begin{array}{*{20}c} {p + c_{2} - (c_{1} + c_{p} \cdot h_{e} - \beta c_{2} - p\beta )\left\{ {\frac{1}{\beta }\left( {\kappa_{5} \kappa_{6} + \beta \sigma_{2} } \right)\left( {\frac{{\kappa_{1} }}{\chi \beta } - 1} \right) + \kappa_{1} \chi \sigma_{6} \ln \chi } \right\}} \\ { - \left\{ {(c_{1} + c_{p} \cdot h_{e} - p\beta )\left( {\frac{{1 - e^{{ - \beta t_{d} }} }}{\beta }} \right) + c_{2} e^{{ - \beta t_{d} }} + c + c_{p} \cdot c_{e} } \right\}\frac{{(1 + \beta t_{1} )}}{\chi }\psi } \\ \end{array} } \right],$$
$$\nu_{1} = \left[ {\begin{array}{*{20}c} {p + c_{2} - (c_{1} + c_{p} .h_{e} - \beta c_{2} - p\beta )\left\{ {\begin{array}{*{20}c} {\frac{1}{\beta }\left( {\kappa_{5} \chi_{2} + \beta \chi_{3} } \right)\left( {\frac{{\kappa_{1} }}{{\beta \chi_{1} }} - 1} \right)} \\ { + \kappa_{1} \chi_{1} \ln \chi_{1} \left( {1 - \beta x - e^{ - \beta x} } \right)} \\ \end{array} } \right\}} \\ {\quad - \left\{ {(c_{1} + c_{p} .h_{e} - p\beta )\left( {\frac{{1 - e^{{ - \beta t_{d} }} }}{\beta }} \right) + c_{2} e^{{ - \beta t_{d} }} + c + c_{p} .c_{e} } \right\}\frac{{\left( {1 + \beta x} \right)}}{{\chi_{1} }}\psi } \\ \end{array} } \right],$$
$$\nu^{0} = \left[ {\begin{array}{*{20}c} {p + c_{2} - (c_{1} + c_{p} .h_{e} - \beta c_{2} - p\beta )\left[ {\kappa_{1} \chi \ln \chi \left( {1 - \beta t_{d} - e^{{ - \beta t_{d} }} } \right)} \right]} \\ { - \left[ {(c_{1} + c_{p} \cdot h_{e} - p\beta )\left( {\frac{{1 - e^{{ - \beta t_{d} }} }}{\beta }} \right) + c_{2} e^{{ - \beta t_{d} }} + c + c_{p} \cdot c_{e} } \right]\left( {1 + \beta t_{d} } \right)} \\ \end{array} } \right].$$

Appendix 2: Proof of Theorem 1

  1. (a)

    From Eq. (18), one can be written as \(\mu = - \eta \left( {\frac{{\delta \left( {T - t_{1} } \right)}}{{1 + \delta \left( {T - t_{1} } \right)}}} \right) < 0\) and \(\eta + \mu = \frac{\eta }{{1 + \delta \left( {T - t_{1} } \right)}} > 0.\) From our assumptions, it is clear that \(T > t_{1.}\) Hence, from Eq. (21) we have \(\frac{\mu }{{\delta \left( {\eta + \mu } \right)}} < 0.\) Because the numerator part, \(\mu < 0;\) thus, the denominator part \(\delta \left( {\eta + \mu } \right) > 0.\) From this inequality, one can find the value of \(t_{1}\) as \(t_{1}^{b}\) (say).

Next, from Eq. (23), \(\Gamma \left( x \right)\) is defined as

$$\Gamma \left( x \right) = \left[ {\begin{array}{*{20}l} {\frac{{A + \tau \cdot A_{e} }}{D\left( p \right)} - \frac{\eta }{\delta }\ln \left[ {1 - \frac{{\mu_{1} }}{{\eta + \mu_{1} }}} \right] + \frac{\delta x - 1}{\delta }\mu_{1} - px} \hfill \\ {\quad - (p\beta - c_{1} - \tau \cdot h_{e} )\left[ {\left\{ {\psi \left\{ {\beta \left( {t_{d} - x} \right) + \kappa_{1} \ln \omega_{1} } \right\} + \frac{{e^{{\beta t_{d} }} }}{\beta }} \right\}\left( {\frac{{1 - e^{{ - \beta t_{d} }} }}{\beta }} \right) - \frac{{t_{d} }}{\beta }} \right]} \hfill \\ {\quad - (p\beta - c_{1} - \tau \cdot h_{e} + \beta c_{2} )\left[ {\frac{{\pi_{1} \kappa_{1} }}{36} + \frac{{\left[ {\kappa_{6} \left( {\chi_{2} + \beta \chi_{3} } \right) + \beta^{2} \chi_{4} } \right]}}{{\beta^{2} }} - \frac{{\kappa_{5} \chi_{2} + \beta \chi_{3} }}{{\beta^{2} }}\left[ {\beta x + \kappa_{1} \ln \chi_{1} } \right]} \right]} \hfill \\ {\quad + \left( {c + \tau \cdot c_{e} } \right)\left[ {\frac{1}{\beta }\left( {e^{{\beta t_{d} }} - 1} \right) + \psi \left[ {\beta \left( {t_{d} - x} \right) + \kappa_{1} \ln \omega_{1} } \right]} \right]} \hfill \\ {\quad - \left( {p - c - \tau \cdot c_{e} } \right)\left[ {\frac{{\ln \left\{ {1 + \delta \left( {T - x} \right)} \right\}}}{\delta } - \frac{T}{{1 + \delta \left( {T - x} \right)}}} \right]} \hfill \\ {\quad + c_{2} \left[ {\psi e^{{ - \beta t_{d} }} \left\{ {\kappa_{1} \ln \omega_{1} + \beta \left( {t_{d} - x} \right)} \right\} - \left( {x - t_{d} } \right)} \right]} \hfill \\ \end{array} } \right] = 0$$
(24)

Taking the first-order derivative of \(\Gamma \left( x \right)\) with respect to \(x \in \left( {t_{d} ,t_{1}^{b} } \right),\) we get

$$\frac{{{\text{d}}\Gamma \left( x \right)}}{{{\text{d}}x}} = \left[ {\begin{array}{*{20}l} {\left( {\frac{1}{\delta }\left( {1 - \delta x} \right) + \frac{\eta }{{\delta \left( {\eta + \mu_{1} } \right)}}} \right)\rangle_{1} + \mu_{1} {-}p} \hfill \\ {\quad - (p\beta - c_{1} - \tau \cdot h_{e} )\left( {\frac{{1 - e^{{ - \beta t_{d} }} }}{\beta }} \right)\left( {\frac{{\kappa_{1} }}{{\chi_{1} }} - \beta } \right)\psi } \hfill \\ {\quad - (p\beta - c_{1} - \tau \cdot h_{e} + \beta c_{2} )\left[ {\begin{array}{*{20}c} {\frac{1}{\beta }\left( {\beta \chi_{5} + \kappa_{6} \left( {\chi_{6} - e^{ - \beta x} } \right)} \right)} \\ { - \frac{1}{{\beta^{2} }}\left\{ {\left( {\beta \chi_{6} - \beta \kappa_{5} e^{ - \beta x} } \right)\left( {\beta x + \kappa_{1} \ln \chi_{1} } \right)} \right\}} \\ { + \frac{{\kappa_{1} \chi_{10} }}{36} - \frac{1}{{\beta^{2} }}\left( {\beta - \frac{{\kappa_{1} }}{{\chi_{1} }}} \right)\left( {\chi_{2} \kappa_{5} + \beta \chi_{3} } \right)} \\ \end{array} } \right]} \hfill \\ {\quad - c_{2} e^{{ - \beta t_{d} }} \psi \left( {\beta - \frac{{\kappa_{1} }}{{\chi_{1} }}} \right) - c_{2} - \frac{{\left( {p - c - \tau \cdot c_{e} } \right)\left( {\delta x - 1} \right)}}{{\left\{ {1 + \delta \left( {T - x} \right)} \right\}^{2} }}} \hfill \\ \end{array} } \right] < 0$$
(25)

So, \(\Gamma \left( x \right)\) is strictly decreasing function with respect to \(x \in \left[ {t_{d} ,t_{1}^{b} } \right)\). By using assumption, we get

$$\Delta_{1} = \Gamma \left( {t_{d} } \right) = \left[ {\begin{array}{*{20}l} {\frac{{A + \tau \cdot A_{e} }}{D\left( p \right)} - \frac{\eta }{\delta }\ln \left[ {1 - \frac{{\mu^{0} }}{{\eta + \mu^{0} }}} \right] + \frac{{\delta t_{d} - 1}}{\delta }\mu^{0} - pt_{d} - (p\beta - c_{1} - \tau \cdot h_{e} )\left( {\frac{{e^{{\beta t_{d} }} + \beta t_{d} - 1}}{{\beta^{2} }}} \right)} \hfill \\ {\quad - \left( {p - c - \tau \cdot c_{e} } \right)\left[ {\frac{{\ln \left\{ {1 + \delta \left( {T - t_{d} } \right)} \right\}}}{\delta } - \frac{T}{{1 + \delta \left( {T - t_{d} } \right)}}} \right] + \left( {c + \tau \cdot c_{e} } \right)\left( {\frac{{e^{{\beta t_{d} }} - 1}}{\beta }} \right)} \hfill \\ \end{array} } \right] \ge 0.$$
(26)

and it can be shown that \(\mathop {\lim }\limits_{{x \to t_{1}^{b} - }} \Gamma \left( x \right) = - \infty .\) Therefore, using the intermediate value theorem, there exists a unique \(t_{1}^{*} \in \left[ {t_{d} ,t_{1}^{b} } \right)\) such that \(\Gamma \left( {t_{1}^{*} } \right) = 0,\) i.e., \(t_{1}^{*}\) is the unique solution of Eq. (23). By using the value of \(t_{1}^{*} ,\) we can find the value of \(T\) (denoted by \(T^{*}\)) from Eq. (27) as \(T^{*} = t_{1}^{*} - \frac{{\mu \left( {t_{1}^{*} } \right)}}{{\delta \left( {\eta + \mu \left( {t_{1}^{*} } \right)} \right)}}\).

  1. (b)

    Again, if \(\Delta_{1} < 0,\) then from Eq. (24), we get \(\Gamma \left( {t_{d} } \right) < 0.\) Since \(\Gamma \left( x \right)\) is a strictly decreasing of \(x \in \left[ {t_{d} ,t_{1}^{b} } \right),\) that implies \(\Gamma \left( x \right) < 0\) for all \(x \in \left[ {t_{d} ,t_{1}^{b} } \right)\). Thus, we cannot find any \(t_{1} \in \left[ {t_{d} ,t_{1}^{b} } \right)\) such that \(\Gamma \left( {t_{1} } \right) = 0;\) this completes the proof.

Appendix 3: Proof of Theorem 2

  1. (a)

    Consider \({\Pi }_{c} \left( {t_{1} ,T,p} \right) = \frac{{\Delta \left( {t_{1} ,T} \right)}}{{\Sigma \left( {t_{1} ,T} \right)}},\) where \(\Sigma \left( {t_{1} ,T} \right) = T\) and

    $$\left( {t_{1} ,T} \right) = D\left( p \right)\left[ {\begin{array}{*{20}l} {pt_{1} - \frac{{A + \tau \cdot A_{e} - \tau .\varpi T}}{D\left( p \right)} + (p\beta - c_{1} - \tau \cdot h_{e} )\left[ {\left[ {\psi \left( {\beta \left( {t_{d} - t_{1} } \right) + \kappa_{1} \ln \omega } \right) + \frac{{e^{{\beta t_{d} }} }}{\beta }} \right]\left( {\frac{{1 - e^{{ - \beta t_{d} }} }}{\beta }} \right) - \frac{{t_{d} }}{\beta }} \right]} \hfill \\ {\quad + (p\beta - c_{1} - \tau \cdot h_{e} + \beta c_{2} )\left[ {\frac{{\pi \kappa_{1} }}{36} + \frac{{\left[ {\kappa_{6} \left( {\sigma_{1} + \beta \sigma_{2} } \right) + \beta^{2} \sigma_{3} } \right]}}{{\beta^{2} }} - \frac{{\kappa_{5} \sigma_{1} + \beta \sigma_{2} }}{{\beta^{2} }}\left[ {\beta t_{1} + \kappa_{1} \ln \chi } \right]} \right]} \hfill \\ {\quad - \left( {c + \tau \cdot c_{e} } \right)\left[ {\frac{1}{\beta }\left( {e^{{\beta t_{d} }} - 1} \right) + \psi \left\{ {\beta \left( {t_{d} - t_{1} } \right) + \kappa_{1} \ln \omega } \right\}} \right] + \frac{{\left( {p - c - \tau \cdot c_{e} } \right)\ln \left[ {1 + \delta \left( {T - t_{1} } \right)} \right]}}{\delta }} \hfill \\ {\quad - c_{2} \left[ {\psi e^{{ - \beta t_{d} }} \left\{ {\kappa_{1} \ln \omega + \beta \left( {t_{d} - t_{1} } \right)} \right\} - t_{1} + t_{d} } \right] - \left( {\frac{{c_{3} }}{\delta } + c_{4} } \right)\left[ {T - t_{1} - \frac{{\ln \left\{ {1 + \delta \left( {T - t_{1} } \right)} \right\}}}{\delta }} \right]} \hfill \\ \end{array} } \right]$$
    (27)

First-order derivative of \(\Delta \left( {t_{1} ,T} \right)\) with respect to

$$T$$
$$\frac{{\partial \Delta \left( {t_{1} ,T} \right)}}{\partial T} = D\left( p \right)\left[ {\left( {p - c - \tau \cdot c_{e} } \right)\frac{1}{{1 + \delta \left( {T - t_{1} } \right)}} - \left( {\frac{{c_{3} }}{\delta } + c_{4} } \right)\frac{{\delta \left( {T - t_{1} } \right)}}{{1 + \delta \left( {T - t_{1} } \right)}}} \right]$$
(28)

Second-order derivative of \(\Delta \left( {t_{1} ,T} \right)\) with respect to \(T\)

$$\frac{{\partial^{2} \Delta \left( {t_{1} ,T} \right)}}{{\partial T^{2} }} = - D\left( p \right)\left[ {\left( {p - c - \tau .c_{e} } \right)\frac{\delta }{{\left\{ {1 + \delta \left( {T - t_{1} } \right)} \right\}^{2} }} + \left( {\frac{{c_{3} }}{\delta } + c_{4} } \right)\frac{\delta }{{\left\{ {1 + \delta \left( {T - t_{1} } \right)} \right\}^{2} }}} \right] < 0,$$
(29)
$$\frac{{\partial^{2} \Delta \left( {t_{1} ,T} \right)}}{{\partial T^{2} }} = - D\left( p \right)X,$$
$${\text{where}}\quad X = \left[ {\left( {p - c - \tau .c_{e} } \right)\frac{\delta }{{\left\{ {1 + \delta \left( {T - t_{1} } \right)} \right\}^{2} }} + \left( {\frac{{c_{3} }}{\delta } + c_{4} } \right)\frac{\delta }{{\left\{ {1 + \delta \left( {T - t_{1} } \right)} \right\}^{2} }}} \right] > 0.$$

First-order derivative of \(\Delta \left( {t_{1} ,T} \right)\) with respect to \(t_{1}\)

$$\frac{{\partial \Delta \left( {t_{1} ,T} \right)}}{{\partial t_{1} }} = D\left( p \right)\left[ {\begin{array}{*{20}l} {p + c_{2} - \left( {\frac{{c_{3} }}{\delta } + c_{4} } \right)\left( {\frac{{\delta \left( {t_{1} - T} \right)}}{{1 + \delta \left( {T - t_{1} } \right)}}} \right) - \left( {p - c - \tau \cdot c_{e} } \right)\frac{1}{{\left[ {1 + \delta \left( {T - t_{1} } \right)} \right]}}} \hfill \\ {\quad + (p\beta - c_{1} - \tau \cdot h_{e} + \beta c_{2} )\left[ {\frac{1}{\beta }\left( {\kappa_{5} \sigma_{1} + \beta \sigma_{2} } \right)\left( {\frac{{\kappa_{1} }}{\chi \beta } - 1} \right) + \kappa_{1} \chi \sigma_{6} ln\chi } \right]} \hfill \\ {\quad + \left[ {(p\beta - c_{1} - \tau \cdot h_{e} )\left( {\frac{{1 - e^{{ - \beta t_{d} }} }}{\beta }} \right) - c_{2} e^{{ - \beta t_{d} }} - c - \tau \cdot c_{e} } \right]\frac{{(1 + \beta t_{1} )}}{\chi }\psi } \hfill \\ \end{array} } \right]$$
(30)

Second-order derivative of \(\Delta \left( {t_{1} ,T} \right)\) with respect to \(t_{1}\)

$$\frac{{\partial^{2} \Delta \left( {t_{1} ,T} \right)}}{{\partial t_{1}^{2} }} = - D\left( p \right)\left[ {\begin{array}{*{20}l} {\left( {\frac{{c_{3} }}{\delta } + c_{4} } \right)\frac{\delta }{{\left\{ {1 + \delta \left( {T - t_{1} } \right)} \right\}^{2} }} + \left( {p - c - \tau \cdot c_{e} } \right)\frac{\delta }{{\left\{ {1 + \delta \left( {T - t_{1} } \right)} \right\}^{2} }}} \hfill \\ { + \left\{ {(c_{1} + \tau \cdot h_{e} - p\beta )\left( {\frac{{1 - e^{{ - \beta t_{d} }} }}{\beta }} \right) + c_{2} e^{{ - \beta t_{d} }} + c + \tau \cdot c_{e} } \right\}\left( {\frac{\beta }{\chi } + \frac{{(1 + \beta t_{1} )}}{{\chi^{2} }}} \right)\psi } \hfill \\ { + (c_{1} + \tau \cdot h_{e} - p\beta - \beta c_{2} )\left\{ {\begin{array}{*{20}c} {e^{{ - \beta t_{1} }} \kappa_{5} - \sigma_{5} + \kappa_{1} \sigma_{6} \ln \chi } \\ { + \frac{{\kappa_{1} \left[ {\sigma_{1} \kappa_{5} + \beta \sigma_{2} } \right]}}{{\beta^{2} \chi^{2} }}} \\ { + \frac{{\kappa_{1} }}{\beta \chi }\left\{ {\begin{array}{*{20}c} {\sigma_{5} - e^{{ - \beta t_{1} }} \kappa_{5} } \\ { - \beta \chi \sigma_{6} \left( {1 + \ln \chi } \right)} \\ { - \beta \chi \ln \chi \left\{ {\begin{array}{*{20}c} {\sigma_{6} } \\ { + \beta \chi \left\{ {1 - e^{{ - \beta t_{1} }} } \right\}} \\ \end{array} } \right\}} \\ \end{array} } \right\}} \\ \end{array} } \right\}} \hfill \\ \end{array} } \right]$$
(31)

\(\frac{{\partial^{2} \Delta \left( {t_{1} ,T} \right)}}{{\partial t_{1}^{2} }} = - D\left( p \right)\left[ {X + Y} \right],\) where

$$Y = \left[ {\begin{array}{*{20}l} {\left\{ {(c_{1} + \tau \cdot h_{e} - p\beta )\left( {\frac{{1 - e^{{ - \beta t_{d} }} }}{\beta }} \right) + c_{2} e^{{ - \beta t_{d} }} + c + \tau \cdot c_{e} } \right\}\left( {\frac{\beta }{\chi } + \frac{{(1 + \beta t_{1} )}}{{\chi^{2} }}} \right)\psi } \hfill \\ { + (c_{1} + \tau \cdot h_{e} - p\beta - \beta c_{2} )\left\{ {\begin{array}{*{20}l} {e^{{ - \beta t_{1} }} \kappa_{5} - \sigma_{5} + \kappa_{1} \sigma_{6} \ln \chi } \hfill \\ { + \frac{{\kappa_{1} \left[ {\sigma_{1} \kappa_{5} + \beta \sigma_{2} } \right]}}{{\beta^{2} \chi^{2} }}} \hfill \\ { + \frac{{\kappa_{1} }}{\beta \chi }\left\{ {\begin{array}{*{20}l} {\sigma_{5} - e^{{ - \beta t_{1} }} \kappa_{5} } \hfill \\ { - \beta \chi \sigma_{6} \left( {1 + \ln \chi } \right)} \hfill \\ { - \beta \chi \ln \chi \left\{ {\begin{array}{*{20}c} {\sigma_{6} } \\ { + \beta \chi \left\{ {1 - e^{{ - \beta t_{1} }} } \right\}} \\ \end{array} } \right\}} \hfill \\ \end{array} } \right\}} \hfill \\ \end{array} } \right\}} \hfill \\ \end{array} } \right]$$
$$\frac{{\partial \Delta \left( {t_{1} ,T} \right)}}{{\partial T\delta t_{1} }} = D\left( p \right)\left[ {\left( {p - c - \tau .c_{e} } \right)\frac{\delta }{{\left\{ {1 + \delta \left( {T - t_{1} } \right)} \right\}^{2} }} + \left( {\frac{{c_{3} }}{\delta } + c_{4} } \right)\frac{\delta }{{\left\{ {1 + \delta \left( {T - t_{1} } \right)} \right\}^{2} }}} \right]$$
(32)
$$\frac{{\partial \Delta \left( {t_{1} ,T} \right)}}{{\partial T\delta t_{1} }} = D\left( p \right)X$$

Therefore, the Hessian matrix for \(\Delta \left( {t_{1} ,T} \right)\) is:

$$H = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \Delta \left( {t_{1} ,T} \right)}}{{\partial t_{1}^{2} }}} & {\frac{{\partial \Delta \left( {t_{1} ,T} \right)}}{{\delta t_{1} \partial T}}} \\ {\frac{{\partial \Delta \left( {t_{1} ,T} \right)}}{{\partial T\delta t_{1} }}} & {\frac{{\partial^{2} \Delta \left( {t_{1} ,T} \right)}}{{\partial T^{2} }}} \\ \end{array} } \right]$$
(33)

The determinant of \(H\) is

$$\frac{{\partial^{2} \Delta \left( {t_{1} ,T} \right)}}{{\partial t_{1}^{2} }} \times \frac{{\partial^{2} \Delta \left( {t_{1} ,T} \right)}}{{\partial T^{2} }} - \left\{ {\frac{{\partial \Delta \left( {t_{1} ,T} \right)}}{{\partial T\delta t_{1} }}} \right\}^{2} = \left\{ {D\left( p \right)} \right\}^{2} \left[ {X + Y} \right]X - \left\{ {D\left( p \right)} \right\}^{2} X^{2} = \left\{ {D\left( p \right)} \right\}^{2} XY > 0.$$

Clearly, from the Hessian matrix \(H,\) the principal minors \(\frac{{\partial^{2} \Delta \left( {t_{1} ,T} \right)}}{{\partial t_{1}^{2} }} < 0\) and \(\frac{{\partial^{2} \Delta \left( {t_{1} ,T} \right)}}{{\partial T^{2} }} < 0\) and \({\text{det}}\left( H \right) > 0 ;\) therefore, the profit function \({\Pi }_{c} \left( {t_{1} ,T,p} \right)\) is pseudo-concave with respect to the optimal time points \(\left( {t_{1} ,T} \right)\). By our assumption \(\Sigma \left( {t_{1} ,T} \right) = T > 0\) and using (Cambini and Martein (2009)) theorem, we have \({\Pi }_{c} \left( {t_{1} ,T,p} \right)\) is a pseudo-concave with respect to the optimal time point \(\left( {t_{1} ,T} \right).\)

  1. (b)

    If \(\Delta_{1} < 0\), then clearly \(\Gamma \left( x \right) < 0 \forall x \in \left[ {t_{d} ,t_{1}^{b} } \right).\)

From Eq. (19) and Eq. (24), it can be written as \(\frac{{\partial {\Pi }_{c} \left( {t_{1} ,T,p} \right)}}{\partial T} = \frac{D\left( p \right)}{{T^{2} }}\Gamma \left( {t_{1} } \right) < 0 \forall t_{1} \in \left[ {t_{d} ,t_{1}^{b} } \right)\) which implies \({\Pi }_{c} \left( {t_{1} ,T,p} \right)\) is strictly decreasing function of \(T.\) Hence, \({\Pi }_{c} \left( {t_{1} ,T,p} \right)\) has a maximum value when \(T = t_{d} - \frac{{\mu^{0} }}{{\delta \left( {\eta + \mu^{0} } \right)}}\) as \(t_{1} = t_{d} .\) Therefore, \({\Pi }_{c} \left( {t_{1} ,T,p} \right)\) has a maximum value at \(\left( {t_{1} ,T} \right).\)

This completes the proof.

Appendix 4: Proof of Theorem 3

Second-order derivative of \({\Pi }_{c} \left( {t_{1} ,T,p} \right)\) with respect to \(p\).

$$\frac{{\partial^{2} {\Pi }_{c} \left( {t_{1} ,T,p} \right)}}{{\partial p^{2} }} = \frac{1}{T}\left[ {\begin{array}{*{20}l} {\left( {2D^{\prime}\left( p \right) + pD^{\prime\prime}\left( p \right)} \right)t_{1} } \hfill \\ {\quad + \left( {2D^{\prime}\left( p \right) + \left( {p - c - \tau \cdot c_{e} } \right)D^{\prime\prime}\left( p \right)} \right)\frac{{\ln \left\{ {1 + \delta \left( {T - t_{d} } \right)} \right\}}}{\delta }} \hfill \\ {\quad + \left( {2\beta D^{\prime}\left( p \right) + (p\beta - c_{1} - \tau \cdot h_{e} )D^{\prime\prime}\left( p \right)} \right)} \hfill \\ {\quad \times \left[ {\left\{ {\psi \left( {\beta \left( {t_{d} - t_{1} } \right) + \kappa_{1} \ln \omega } \right) + \frac{{e^{{\beta t_{d} }} }}{\beta }} \right\}\left( {\frac{{1 - e^{{ - \beta t_{d} }} }}{\beta }} \right) - \frac{{t_{d} }}{\beta }} \right]} \hfill \\ {\quad + \left( {2\beta D^{\prime}\left( p \right) + (p\beta - c_{1} - \tau \cdot h_{e} + \beta c_{2} )D^{\prime\prime}\left( p \right)} \right)} \hfill \\ {\quad \times \left[ {\frac{{\pi \kappa_{1} }}{36} + \frac{1}{{\beta^{2} }}\left[ {\kappa_{6} \left( {\sigma_{1} + \beta \sigma_{2} } \right) + \beta^{2} \sigma_{3} } \right] - \frac{{\kappa_{5} \sigma_{1} + \beta \sigma_{2} }}{{\beta^{2} }}\left[ {\beta t_{1} + \kappa_{1} \ln \chi } \right]} \right]} \hfill \\ {\quad - \left( {c + \tau \cdot c_{e} } \right)D^{\prime\prime}\left( p \right)\left[ {\frac{1}{\beta }\left( {e^{{\beta t_{d} }} - 1} \right) + \psi \left\{ {\beta \left( {t_{d} - t_{1} } \right) + \kappa_{1} \ln \omega } \right\}} \right]} \hfill \\ {\quad - c_{2} D^{\prime\prime}\left( p \right)\left[ {\psi e^{{ - \beta t_{d} }} \left( {\kappa_{1} \ln \omega + \beta \left( {t_{d} - t_{1} } \right)} \right) - \left( {t_{1} - t_{d} } \right)} \right]} \hfill \\ {\quad - \left( {\frac{{c_{3} }}{\delta } + c_{4} } \right)D^{\prime\prime}\left( p \right)\left[ {\left( {T - t_{1} } \right) - \frac{{\ln \left\{ {1 + \delta \left( {T - t_{1} } \right)} \right\}}}{\delta }} \right]} \hfill \\ \end{array} } \right]$$
(34)

If the revenue \(pD\left( p \right)\) is a strictly concave function of \(p\), then \(2D^{\prime}\left( p \right) + pD^{\prime\prime}\left( p \right) < 0\). Also, it is assumed that \(D\left( p \right)\) is a decreasing function of \(p\), so \(D^{\prime}\left( p \right) < 0\) and \(D^{^{\prime\prime}} \left( p \right) > 0\). Consequently,\(\frac{{\partial^{2} {\Pi }_{c} \left( {t_{1} ,T,p} \right)}}{{\partial p^{2} }} < 0\), which means that the profit function \({\Pi }_{c} \left( {t_{1} ,T,p} \right)\), for any given value of \(\left( {t_{1} ,T} \right)\), is a strictly concave function of \(p,\) and hence, there exists a unique value of \(p\) that maximizes \({\Pi }_{c} \left( {t_{1} ,T,p} \right).\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahato, F., Choudhury, M., Das, S. et al. Optimal pricing and replenishment decisions for non-instantaneous deteriorating items with a fixed lifetime and partial backordering under carbon regulations. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-03536-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-03536-y

Keywords

Navigation