Skip to main content

Advertisement

Log in

Simulation of the effects of climate change, crop pattern change, and developing irrigation systems on the groundwater resources by SWAT, WEAP and MODFLOW models: a case study of Fars province, Iran

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The severe shortage of water resources is the most important cause of the uncontrolled abstraction of groundwater resources in semi-arid regions. In this regard, modeling and forecasting groundwater levels can help in the accurate estimation of watershed water consumption and sustainable agricultural development. In the present study, the interaction effect of surface and groundwater using SWAT, WEAP, and MODFLOW models on agricultural water consumption of Kavar plain in Fars province has been evaluated. Also, the simultaneous impact of climate change, increasing the efficiency of irrigation systems, and changing the cultivation pattern to predict the groundwater level in the future were analyzed. For these purposes, first, the changes in crop pattern and type of irrigation systems during the decade 2008 to 2018 were investigated; then different management scenarios were defined to balance the groundwater level. The results of predicting climatic parameters indicate that in all three scenarios of emissions in the next period (2021–2040), the temperature will increase (0.54–1.01 °C) and precipitation will decrease (3–10%). The combination of SWAT and WEAP models with the MODFLOW model showed that by using these models, the interaction behavior of surface water and groundwater, the amount of recharges, and groundwater level can be quantitatively simulated. Also, applying different irrigation scenarios in the models showed that by adjusting the cultivation pattern and improving surface and pressurized irrigation efficiencies, the amount of groundwater abstraction in dry and normal conditions can be reduced by 23 to 42 percent. Therefore, the groundwater level will increase in the next period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abbasi, F., Sohrab, F., & Abbasi, N. (2017). Evaluation of irrigation efficiencies in Iran. Irrigation and Drainage Structures Engineering Research, 17(67), 113–120. https://doi.org/10.22092/ARIDSE.2017.109617

    Article  Google Scholar 

  • Abbasi, H., Delavar, M., & Bigdeli Naalbandan, R. (2019). Evaluation of climate change impacts on water resource sustainability in river basins using the water footprint scarcity indicators. Iran-Water Resources Research, 15(4), 259–272.

    Google Scholar 

  • Abdelhalim, A., Sefelnasr, A., & Ismail, E. (2019). Numerical modeling technique for groundwater management in Samalut city, Minia Governorate Egypt. Arabian Journal of Geosciences, 12(4), 124. https://doi.org/10.1007/s12517-019-4230-6

    Article  Google Scholar 

  • Adopted, I. (2014). Climate change 2014 synthesis report. Geneva, Szwitzerland: IPCC.

    Google Scholar 

  • Ahmadi, S., & Sepaskhah, A. (2017). Analyzing the consequences of development of pressurized irrigation systems in Iran. Strategic Research Journal of Agricultural Sciences and Natural Resources, 2(2), 131–148.

    Google Scholar 

  • Ahmed, K., Shahid, S., Sachindra, D., Nawaz, N., & Chung, E.-S. (2019). Fidelity assessment of general circulation model simulated precipitation and temperature over Pakistan using a feature selection method. Journal of Hydrology, 573, 281–298. https://doi.org/10.1016/j.jhydrol.2019.03.092

    Article  Google Scholar 

  • Al-Safi, H. I. J., & Sarukkalige, P. R. (2020). The application of conceptual modelling to assess the impacts of future climate change on the hydrological response of the Harvey River catchment. Journal of Hydro-Environment Research, 28, 22–33. https://doi.org/10.1016/j.jher.2018.01.006

    Article  Google Scholar 

  • Amin, A., Iqbal, J., Asghar, A., & Ribbe, L. (2018). Analysis of current and future water demands in the upper Indus Basin under IPCC climate and socio-economic scenarios using a hydro-economic WEAP model. Water, 10(5), 537. https://doi.org/10.3390/w10050537

    Article  Google Scholar 

  • Anonymous. (2018). Statistics and performance Agriculture section Fars province. Iran, Agricultural organization of Fars. Technical Report. p 224. (In Persian).

  • Anonymous. (2015). Studies of the second phase of the irrigation and drainage network Mirza Shirazi dam (Kavar plain). Iran, Parab Consulting Engineers. Regional water company of Fars. Technical Report. p 295. (In Persian).

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development 1. JAWRA Journal of the American Water Resources Association, 34(1), 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

    Article  CAS  Google Scholar 

  • Blanco-Gutiérrez, I., Varela-Ortega, C., & Purkey, D. R. (2013). Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: A hydro-economic modeling approach. Journal of Environmental Management, 128, 144–160. https://doi.org/10.1016/j.jenvman.2013.04.037

    Article  Google Scholar 

  • Chunn, D., Faramarzi, M., Smerdon, B., & Alessi, D. S. (2019). Application of an integrated SWAT–MODFLOW model to evaluate potential impacts of climate change and water withdrawals on groundwater–surface water interactions in west-central Alberta. Water, 11(1), 110. https://doi.org/10.3390/w11010110

    Article  Google Scholar 

  • Connor, R. (2015). The United Nations world water development report 2015: water for a sustainable world (Vol. 1). UNESCO publishing.

    Google Scholar 

  • Dawes, W., Ali, R., Varma, S., Emelyanova, I., Hodgson, G., & McFarlane, D. (2012). Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia. Hydrology and Earth System Sciences, 16(8), 2709–2722. https://doi.org/10.5194/hess-16-2709-2012

    Article  Google Scholar 

  • de Graaf, I. E., Gleeson, T., Sutanudjaja, E. H., & Bierkens, M. F. (2019). Environmental flow limits to global groundwater pumping. Nature, 574(7776), 90–94. https://doi.org/10.5683/SP2/D7I7CC

    Article  Google Scholar 

  • Deng, X., Li, F., Zhao, Y., & Li, S. (2018). Regulation of deep groundwater based on MODFLOW in the water intake area of the south-to-north water transfer project in Tianjin China. Journal of Hydroinformatics, 20(4), 989–1007. https://doi.org/10.2166/hydro.2018.126

    Article  Google Scholar 

  • Eslamian, S., Khordadi, M. J., & Abedi-Koupai, J. (2011). Effects of variations in climatic parameters on evapotranspiration in the arid and semi-arid regions. Global and Planetary Change, 78(3–4), 188–194. https://doi.org/10.1016/j.gloplacha.2011.07.001

    Article  Google Scholar 

  • Etemadi, H., Samadi, S., & Sharifikia, M. (2014). Uncertainty analysis of statistical downscaling models using general circulation model over an international wetland. Climate Dynamics, 42(11–12), 2899–2920. https://doi.org/10.1007/s00382-013-1855-0

    Article  Google Scholar 

  • Ezzine, H., Bouziane, A., & Ouazar, D. (2014). Seasonal comparisons of meteorological and agricultural drought indices in Morocco using open short time-series data. International Journal of Applied Earth Observation and Geoinformation, 26, 36–48. https://doi.org/10.1016/j.jag.2013.05.005

    Article  Google Scholar 

  • Farhadi, S., Nikoo, M. R., Rakhshandehroo, G. R., Akhbari, M., & Alizadeh, M. R. (2016). An agent-based-nash modeling framework for sustainable groundwater management: A case study. Agricultural Water Management, 177, 348–358. https://doi.org/10.1016/j.agwat.2016.08.018

    Article  Google Scholar 

  • Forni, L. G., Medellín-Azuara, J., Tansey, M., Young, C., Purkey, D., & Howitt, R. (2016). Integrating complex economic and hydrologic planning models: An application for drought under climate change analysis. Water Resources and Economics, 16, 15–27. https://doi.org/10.1016/j.wre.2016.10.002

    Article  Google Scholar 

  • Gohari, A., Eslamian, S., Abedi-Koupaei, J., Bavani, A. M., Wang, D., & Madani, K. (2013). Climate change impacts on crop production in Iran’s Zayandeh-Rud River Basin. Science of the Total Environment, 442, 405–419. https://doi.org/10.1016/j.scitotenv.2012.10.029

    Article  CAS  Google Scholar 

  • Goodarzi, M., Abedi-Koupai, J., Heidarpour, M., & Safavi, H. R. (2016). Evaluation of the effects of climate change on groundwater recharge using a hybrid method. Water Resources Management, 30(1), 133–148. https://doi.org/10.1007/s11269-015-1150-4

    Article  Google Scholar 

  • Grafton, R. Q., Williams, J., Perry, C. J., Molle, F., Ringler, C., Steduto, P., Udall, B., Wheeler, S., Wang, Y., & Garrick, D. (2018). The paradox of irrigation efficiency. Science, 361(6404), 748–750. https://doi.org/10.1126/science.aat9314

    Article  CAS  Google Scholar 

  • Hajipour, M., Zakerinia, M., Ziaee, A. N., & Hesam, M. (2016). Water demand management in agriculture and its impact on water resources of Bojnourd basin with WEAP and MODFLOW models. Water and Soil Conservation, 22(4), 85–101. (In Persian).

    Google Scholar 

  • Hussen, B., Mekonnen, A., & Pingale, S. M. (2018). Integrated water resources management under climate change scenarios in the sub-basin of Abaya-Chamo Ethiopia. Modeling Earth Systems and Environment, 4(1), 221–240. https://doi.org/10.1007/s40808-018-0438-9

    Article  Google Scholar 

  • Joodavi, A., Zare, M., Ziaei, A. N., & Ferré, T. P. (2017). Groundwater management under uncertainty using a stochastic multi-cell model. Journal of Hydrology, 551, 265–277. https://doi.org/10.1016/j.jhydrol.2017.06.003

    Article  Google Scholar 

  • Joseph, N., Preetha, P. P., & Narasimhan, B. (2021). Assessment of environmental flow requirements using a coupled surface water-groundwater model and a flow health tool: A case study of Son river in the Ganga basin. Ecological Indicators, 121, 107110. https://doi.org/10.1016/j.ecolind.2020.107110

    Article  Google Scholar 

  • Khajeh, S., Paimozd, S., & Moghaddasi, M. (2017). Assessing the impact of climate changes on hydrological drought based on reservoir performance indices (case study: ZayandehRud River basin, Iran). Water Resources Management, 31(9), 2595–2610. https://doi.org/10.1007/s11269-017-1642-5

    Article  Google Scholar 

  • King, L. M., Irwin, S., Sarwar, R., McLeod, A. I. A., & Simonovic, S. P. (2012). The effects of climate change on extreme precipitation events in the upper Thames River Basin: A comparison of downscaling approaches. Canadian Water Resources Journal/revue Canadienne Des Ressources Hydriques, 37(3), 253–274. https://doi.org/10.4296/cwrj2011-938

    Article  Google Scholar 

  • Kouhestani, S., Eslamian, S. S., Abedi-Koupai, J., & Besalatpour, A. A. (2016). Projection of climate change impacts on precipitation using soft-computing techniques: A case study in Zayandeh-rud Basin Iran. Global and Planetary Change, 144, 158–170. https://doi.org/10.1016/j.gloplacha.2016.07.013

    Article  Google Scholar 

  • Kumar, C. (2012). Climate change and its impact on groundwater resources. International Journal of Engineering and Science, 1(5), 43–60.

    Google Scholar 

  • Mansouri Daneshvar, M. R., Ebrahimi, M., & Nejadsoleymani, H. (2019). An overview of climate change in Iran: Facts and statistics. Environmental Systems Research, 8(1), 1–10. https://doi.org/10.1186/s40068-019-0135-3

    Article  Google Scholar 

  • McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model. US Geological Survey.

  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179–183).

  • Mehta, V. K., Haden, V. R., Joyce, B. A., Purkey, D. R., & Jackson, L. E. (2013). Irrigation demand and supply, given projections of climate and land-use change, in Yolo County, California. Agricultural Water Management, 117, 70–82. https://doi.org/10.1016/j.agwat.2012.10.021

    Article  Google Scholar 

  • Mishra, B. K., Regmi, R. K., Masago, Y., Fukushi, K., Kumar, P., & Saraswat, C. (2017). Assessment of Bagmati river pollution in Kathmandu valley: Scenario-based modeling and analysis for sustainable urban development. Sustainability of Water Quality and Ecology, 9, 67–77. https://doi.org/10.1016/j.swaqe.2017.06.001

    Article  Google Scholar 

  • Mohamed, M. M., Al-Suwaidi, N., Ebraheem, A., & Al Mulla, M. (2016). Groundwater modeling as a precursor tool for water resources sustainability in Khatt area UAE. Environmental Earth Sciences, 75(5), 400. https://doi.org/10.1007/s12665-016-5261-x

    Article  Google Scholar 

  • Mohie El Din, M. O., & Moussa, A. M. (2016). Water management in Egypt for facing the future challenges. Journal of Advanced Research, 7(3), 403–412. https://doi.org/10.1016/j.jare.2016.02.005

    Article  Google Scholar 

  • Molavi, H., Liaghat, A., & Nazari, B. (2017). Assessment of development and improvement policies of pressurized and surface irrigation systems using system dynamics: Case study Aras Basin. Irrigation and Water Engineering, 7(3), 75–92. (In Persian).

    Google Scholar 

  • Multsch, S., Elshamy, M., Batarseh, S., Seid, A., Frede, H.-G., & Breuer, L. (2017). Improving irrigation efficiency will be insufficient to meet future water demand in the Nile Basin. Journal of Hydrology: Regional Studies, 12, 315–330. https://doi.org/10.1016/j.ejrh.2017.04.007

    Article  Google Scholar 

  • Nasseri, A., Abbasi, F., & Akbari, M. (2017). Estimating agricultural water consumption by analyzing water balance. Irrigation and Drainage Structures Engineering Research, 18(68), 17–32.

    Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute

  • Nguyen, T. T., Tsujimura, M., & Naoaki, S. (2013). Groundwater flow modeling: Considering water use in Tay Island, Dong Thap Province, Southwest Vietnam. Procedia Environmental Sciences, 17, 211–220. https://doi.org/10.1016/j.proenv.2013.02.031

    Article  Google Scholar 

  • Perry, C., Steduto, P., & Karajeh, F. (2017). Does improved irrigation technology save water? A review of the evidence. Food and Agriculture Organization of the United Nations, Cairo, 42.

  • Rafiee, M. R., Moazed, H., & Boroomandnasab, A. G. S. (2016). FAO-56 method for estimating evapotranspiration and crop coefficients of eggplant in greenhouse and outdoor conditions. Irrigation Sciences and Engineering, 39(2), 59–77. https://doi.org/10.1016/j.jare.2016.02.005

    Article  Google Scholar 

  • Raposo, J. R., Dafonte, J., & Molinero, J. (2013). Assessing the impact of future climate change on groundwater recharge in Galicia-Costa Spain. Hydrogeology Journal, 21(2), 459–479. https://doi.org/10.1007/s10040-012-0922-7

    Article  Google Scholar 

  • Ronayne, M. J., Roudebush, J. A., & Stednick, J. D. (2017). Analysis of managed aquifer recharge for retiming streamflow in an alluvial river. Journal of Hydrology, 544, 373–382. https://doi.org/10.1016/j.jhydrol.2016.11.054

    Article  Google Scholar 

  • Sedghamiz, A., Nikoo, M. R., Heidarpour, M., & Sadegh, M. (2018). Developing a non-cooperative optimization model for water and crop area allocation based on leader-follower game. Journal of Hydrology, 567, 51–59. https://doi.org/10.1016/j.jhydrol.2018.09.035

    Article  Google Scholar 

  • SEI. (2016). Water evaluation and planning system, WEAP. http://www.weap21.org

  • Semenov, M. A., Brooks, R. J., Barrow, E. M., & Richardson, C. W. (1998). Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Research, 10(2), 95–107.

    Article  Google Scholar 

  • Sepaskhah, A. R., & Fooladmand, H. R. (2004). A computer model for design of microcatchment water harvesting systems for rain-fed vineyard. Agricultural Water Management, 64(3), 213–232. https://doi.org/10.1016/S0378-3774(03)00197-5

    Article  Google Scholar 

  • Smith, M. (1992). CROPWAT: A computer program for irrigation planning and management (No. 46). Food & Agriculture Org.

  • Stancalie, G., Marica, A., & Toulios, L. (2010). Using earth observation data and CROPWAT model to estimate the actual crop evapotranspiration. Physics and Chemistry of the Earth, Parts a/b/c, 35(1–2), 25–30. https://doi.org/10.1016/j.pce.2010.03.013

    Article  Google Scholar 

  • Sun, X., Bernard-Jannin, L., Garneau, C., Volk, M., Arnold, J. G., Srinivasan, R., Sauvage, S., & Sánchez-Pérez, J.-M. (2016). Improved simulation of river water and groundwater exchange in an alluvial plain using the SWAT model. Hydrological Processes, 30(2), 187–202. https://doi.org/10.1002/hyp.10575

    Article  Google Scholar 

  • Surendran, U., Sushanth, C., Mammen, G., & Joseph, E. (2015). Modelling the crop water requirement using FAO-CROPWAT and assessment of water resources for sustainable water resource management: A case study in Palakkad district of humid tropical Kerala, India. Aquatic Procedia, 4, 1211–1219. https://doi.org/10.1016/j.aqpro.2015.02.154

    Article  Google Scholar 

  • Wable, P. S., Chowdary, V., Panda, S., Adamala, S., & Jha, C. (2021). Potential and net recharge assessment in paddy dominated Hirakud irrigation command of eastern India using water balance and geospatial approaches. Environment, Development and Sustainability, 23(7), 10869–10891. https://doi.org/10.1007/s10668-020-01092-3

    Article  Google Scholar 

  • Yates, D., Purkey, D., Sieber, J., Huber-Lee, A., & Galbraith, H. (2005a). WEAP21—A demand-, priority-, and preference-driven water planning model part 2: Aiding freshwater ecosystem service evaluation. Water International, 30(4), 501–512. https://doi.org/10.1080/02508060508691894

    Article  Google Scholar 

  • Yates, D., Purkey, D., Sieber, J., Huber-Lee, A., Galbraith, H., West, J., Herrod-Julius, S., Young, C., Joyce, B., & Rayej, M. (2009). Climate driven water resources model of the Sacramento Basin, California. Journal of Water Resources Planning and Management, 135(5), 303–313. https://doi.org/10.1061/(ASCE)0733-9496(2009)135:5(303)

    Article  Google Scholar 

  • Yates, D., Sieber, J., Purkey, D., & Huber-Lee, A. (2005b). WEAP21—A demand-, priority-, and preference-driven water planning model: Part 1: Model characteristics. Water International, 30(4), 487–500. https://doi.org/10.1080/02508060508691893

    Article  CAS  Google Scholar 

  • Yidana, S. M., & Chegbeleh, L. P. (2013). The hydraulic conductivity field and groundwater flow in the unconfined aquifer system of the Keta Strip, Ghana. Journal of African Earth Sciences, 86, 45–52. https://doi.org/10.1016/j.jafrearsci.2013.06.009

    Article  Google Scholar 

  • Zamani, R., Akhond-Ali, A.-M., Roozbahani, A., & Fattahi, R. (2017). Risk assessment of agricultural water requirement based on a multi-model ensemble framework, southwest of Iran. Theoretical and Applied Climatology, 129(3), 1109–1121. https://doi.org/10.1007/s00704-016-1835-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate the experts of the Regional Water Company and the Agricultural organization of Fars to provide all the required information.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M. K. Shaabani performed conceptualization; writing—original draft; data curation; formal analysis; methodology; software; and validation. J. Abedi-Koupai performed supervision; conceptualization; methodology; validation; visualization; investigation; writing—review and editing. S. S. Eslamian performed supervision; investigation; writing—review and editing. S. A. Gohari performed investigation; validation; writing—review and editing.

Corresponding author

Correspondence to J. Abedi-Koupai.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaabani, M.K., Abedi-Koupai, J., Eslamian, S.S. et al. Simulation of the effects of climate change, crop pattern change, and developing irrigation systems on the groundwater resources by SWAT, WEAP and MODFLOW models: a case study of Fars province, Iran. Environ Dev Sustain 26, 10485–10511 (2024). https://doi.org/10.1007/s10668-023-03157-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-023-03157-5

Keywords

Navigation