Skip to main content

Advertisement

Log in

Relationships between habitat quality and ecological properties across Ziarat Basin in northern Iran

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This study aimed to examine the relationships between habitat quality and ecological properties including land use, elevation, slope, and soil parameters (SOC, phosphorus, and color parameters in the standard CIE L*a*b* color system), across the Ziarat Basin of the Gharehsoo River in northern Iran. Data from satellite imagery, field sampling, and previous reports were used to quantify habitat quality using InVEST, while soil properties were mapped using the IDW method. The relationships between all criteria were assessed using the ArcGIS Geostatistical Analyst and Pearson’s correlation coefficient. The impact of land use on habitat quality was also evaluated based on a subset of landscape metrics including NP, PD, LPI, LSI, and PCI. The results demonstrated that the southern habitats had higher quality than the northern parts of the basin. Habitat quality had a significant positive relationship with elevation (R = 0.9), slope (R = 0.77), SOC (R = 0.65), and a* parameter (R = 0.57), whereas it had a significant inverse relationship with phosphorus (R = − 0.61) and L* parameter (R = − 0.84). Moreover, elevation and slope had a significant positive correlation with SOC (R > 0.53) and a* parameter (R > 0.47), and a significant negative correlation with phosphorus (R < − 0.42) and L* parameter (R < − 0.76). The analysis of landscape metrics also revealed that an enhance in the number of rangeland and forest patches increase habitat quality, whereas increasing agricultural and built-up land uses downgrade habitat quality. Conclusively, habitat quality can be correlated to landform and soil properties influenced by spatial patterns and land use types, which facilitate the understanding of ecological characteristics and land degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ASTER:

Advanced space borne thermal emission and reflection radiometer

CEI:

Commission Internationale de I’Eclairage

DEM:

Digital elevation model

IDW:

Inverse distance weighting

InVEST:

Integrated valuation of ecosystem services and tradeoffs

LPI:

Largest patch index

LSI:

Landscape shape index

NP:

Number of patch

OLI:

Operational land image

PCI:

Patch cohesion index

PD:

Patch density

SOC:

Soil organic carbon

USGS:

United States geological survey

References

  • Adhikari, K., Owens, P. R., Libohova, Z., Miller, D. M., Wills, S. A., & Nemecek, J. (2019). Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change. Science of the Total Environment, 667, 833–845.

    Article  CAS  Google Scholar 

  • Ahmadi Mirghaed, F., Mohammadzadeh, M., Salmanmahiny, A., & Mirkarimi, S. H. (2019). Assessing the interactions between landscape aesthetic quality and spatial indices in Gharasoo watershed, North of Iran. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-019-02342-2.

    Article  Google Scholar 

  • Ahmadi Mirghaed, F., Souri, B., Mohammadzadeh, M., Salmanmahiny, A., & Mirkarimi, S. H. (2018). Evaluation of the relationship between soil erosion and landscape metrics across Gorgan Watershed in northern Iran. Environmental Monitoring and Assessment, 190(11), 643.

    Article  Google Scholar 

  • Baumann, K., Schöning, I., Schrumpf, M., Ellerbrock, R. H., & Leinweber, P. (2016). Rapid assessment of soil organic matter: Soil color analysis and Fourier transform infrared spectroscopy. Geoderma, 278, 49–57.

    Article  CAS  Google Scholar 

  • Bongiorno, G., Bünemann, E. K., Oguejiofor, C. U., Meier, J., Gort, G., Comans, R., Mäder, P., Brussaard, L., & de Goede, R. (2019). Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 99, 38–50.

    Article  CAS  Google Scholar 

  • Borges, F., Glemnitz, M., Schultz, A., & Stachow, U. (2017). Assessing the habitat suitability of agricultural landscapes for characteristic breeding bird guilds using landscape metrics. Environmental Monitoring and Assessment, 189(4), 166.

    Article  Google Scholar 

  • Burkhard, B., Kroll, F., Nedkov, S., & Müller, F. (2012). Mapping ecosystem service supply, demand and budgets. Ecological Indicators, 21, 17–29.

    Article  Google Scholar 

  • CIE. (1986). Commission Internationale de I’Eclairage, colorimetry. . CIE Central Bureau.

  • Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & Van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–326.

    Article  CAS  Google Scholar 

  • Daugomah, J. W., Key, P. B., West, J. B., Shea, N. R., McDaniel, S., Pennington, P. L., & Fulton, M. H. (2014). Relationship between land use classification and grass shrimp Palaemonetes spp. population metrics in coastal watersheds. Environmental Monitoring and Assessment, 186(6), 3445–3453.

    Article  Google Scholar 

  • De Groot, R. S., Alkemade, R., Braat, L., Hein, L., & Willemen, L. (2010). Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity, 7(3), 260–272.

    Article  Google Scholar 

  • Doi, R., Wachrinrat, C., Teejuntuk, S., Sakurai, K., & Sahunalu, P. (2010). Semiquantitative color profiling of soils over a land degradation gradient in Sakaerat, Thailand. Environmental Monitoring and Assessment, 170(1–4), 301–309.

    Article  Google Scholar 

  • Drobnik, T., Greiner, L., Keller, A., & Grêt-Regamey, A. (2018). Soil quality indicators–From soil functions to ecosystem services. Ecological Indicators, 94, 151–169.

    Article  Google Scholar 

  • Fissore, C., Dalzell, B. J., Berhe, A. A., Voegtle, M., Evans, M., & Wu, A. (2017). Influence of topography on soil organic carbon dynamics in a Southern California grassland. CATENA, 149, 140–149.

    Article  CAS  Google Scholar 

  • Hamel, P., Chaplin-Kramer, R., Sim, S., & Mueller, C. (2015). A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the cape fear catchment, North Carolina, USA. Science of the Total Environment, 524, 166–177.

    Article  Google Scholar 

  • Han, Y., Kang, W., Thorne, J., & Song, Y. (2019). Modeling the effects of landscape patterns of current forests on the habitat quality of historical remnants in a highly urbanized area. Urban Forestry & Urban Greening, 41, 354–363.

    Article  Google Scholar 

  • He, J., Huang, J., & Li, C. (2017). The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model. Ecological Modelling, 366, 58–67.

    Article  Google Scholar 

  • Heinrichs, J. A., Bender, D. J., & Schumaker, N. H. (2016). Habitat degradation and loss as key drivers of regional population extinction. Ecological Modelling, 335, 64–73.

    Article  Google Scholar 

  • Ibáñez-Asensio, S., Marques-Mateu, A., Moreno-Ramón, H., & Balasch, S. (2013). Statistical relationships between soil colour and soil attributes in semiarid areas. Biosystems Engineering, 116(2), 120–129.

    Article  Google Scholar 

  • Leh, M. D., Matlock, M. D., Cummings, E. C., & Nalley, L. L. (2013). Quantifying and mapping multiple ecosystem services change in West Africa. Agriculture, Ecosystems & Environment, 165, 6–18.

    Article  Google Scholar 

  • Li, F., Wang, L., Chen, Z., Clarke, K. C., Li, M., & Jiang, P. (2018). Extending the SLEUTH model to integrate habitat quality into urban growth simulation. Journal of Environmental Management, 217, 486–498.

    Article  Google Scholar 

  • Li, H., Liu, L., & Ji, X. (2015). Modeling the relationship between landscape characteristics and water quality in a typical highly intensive agricultural small watershed, Dongting lake basin, south central China. Environmental Monitoring and Assessment, 187(3), 129.

    Article  Google Scholar 

  • Lin, Y. P., Lin, W. C., Wang, Y. C., Lien, W. Y., Huang, T., Hsu, C. C., Schmeller, D. S., & Crossman, N. D. (2017). Systematically designating conservation areas for protecting habitat quality and multiple ecosystem services. Environmental Modelling & Software, 90, 126–146.

    Article  CAS  Google Scholar 

  • Lv, Z. Q., Dai, F. Q., & Sun, C. (2012). Evaluation of urban sprawl and urban landscape pattern in a rapidly developing region. Environmental Monitoring and Assessment, 184(10), 6437–6448.

    Article  Google Scholar 

  • McGarigal, K., Cushman, S. A., & Ene, E., (2012). FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site: http://www.umass.edu/landeco/research/fragstats/fragstats.html.

  • MEA. (2005). Ecosystems and human well-being: Synthesis. . Island Press. https://doi.org/10.1196/annals.1439.003.

  • Moreira, M., Fonseca, C., Vergílio, M., Calado, H., & Gil, A. (2018). Spatial assessment of habitat conservation status in a Macaronesian island based on the InVEST model: A case study of Pico Island (Azores, Portugal). Land Use Policy, 78, 637–649.

    Article  Google Scholar 

  • Muñoz-Rojas, M. (2018). Soil quality indicators: A critical tool in ecosystem restoration. Current Opinion in Environmental Science & Health, 5, 47–52.

    Article  Google Scholar 

  • Nie, C., Yang, J., & Huang, C. (2016). Assessing the habitat quality of aquatic environments in urban Beijing. Procedia Environmental Sciences, 36, 162–168.

    Article  Google Scholar 

  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.

  • Polasky, S., Nelson, E., Pennington, D., & Johnson, K. A. (2011). The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environmental and Resource Economics, 48(2), 219–242.

    Article  Google Scholar 

  • Reeves, D. W. (1997). The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil and Tillage Research, 43(1–2), 131–167.

    Article  Google Scholar 

  • Saeidi, S., Mohammadzadeh, M., Salmanmahiny, A., & Mirkarimi, S. H. (2017). Performance evaluation of multiple methods for landscape aesthetic suitability mapping: A comparative study between multi-criteria evaluation, logistic regression and multi-layer perceptron neural network. Land Use Policy, 67, 1–12.

    Article  Google Scholar 

  • Sallustio, L., De Toni, A., Strollo, A., Di Febbraro, M., Gissi, E., Casella, L., Geneletti, D., Munafò, M., Vizzarri, M., & Marchetti, M. (2017). Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. Journal of Environmental Management, 201, 129–137.

    Article  Google Scholar 

  • Sharp, R., Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G., Kim, C. K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M., Mandle, L., Hamel, P., & Chaplin-Kramer, R. (2015). InVEST 3.0 User's Guide. The natural capital project, Stanford University, University of Minnesota, the Nature Conservancy, and World Wildlife Fund.

  • Soleimani, A., Hosseini, S. M., Bavani, A. R. M., Jafari, M., & Francaviglia, R. (2019). Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. CATENA, 177, 227–237.

    Article  CAS  Google Scholar 

  • Souri, B., & Watanabe, M. (2017). Comparative evaluation of age and weathering condition of the Sirvan River terraces in western Iran. Geosciences Journal, 21(1), 33–46.

    Article  CAS  Google Scholar 

  • Souri, B., Watanabe, M., & Sakagami, K. (2006). Contribution of parker and product indexes to evaluate weathering condition of yellow brown forest soils in Japan. Geoderma, 130(3–4), 346–355.

    Article  CAS  Google Scholar 

  • Stiglitz, R., Mikhailova, E., Post, C., Schlautman, M., Sharp, J., Pargas, R., Glover, B., & Mooney, J. (2017). Soil color sensor data collection using a GPS-enabled smartphone application. Geoderma, 296, 108–114.

    Article  Google Scholar 

  • Sukhdev, P., Wittmer, H., & Miller, D. (2014). The economics of ecosystems and biodiversity (TEEB): Challenges and responses. In D. Helm & C. Hepburn (Eds.), Nature in the Balance: The Economics of Biodiversity. Oxford University Press.

  • Sun, W., Zhu, H., & Guo, S. (2015). Soil organic carbon as a function of land use and topography on the Loess Plateau of China. Ecological Engineering, 83, 249–257.

    Article  Google Scholar 

  • Sun, X., Jiang, Z., Liu, F., & Zhang, D. (2019). Monitoring spatio-temporal dynamics of habitat quality in Nansihu Lake basin, eastern China, from 1980 to 2015. Ecological Indicators, 102, 716–723.

    Article  Google Scholar 

  • Sun, X., & Li, F. (2017). Spatiotemporal assessment and trade-offs of multiple ecosystem services based on land use changes in Zengcheng, China. Science of the Total Environment, 609, 1569–1581.

    Article  CAS  Google Scholar 

  • TEEB. (2010). Mainstreaming the economics of nature: A synthesis of the approach, conclusions and recommendations of TEEB (Economics of Ecosystems and Biodiversity). . Earthscan.

  • Turner, M. G., & Gardner, R. H. (2015). Landscape ecology in theory and practice. . Springer.

  • Velasquez, E., & Lavelle, P. (2019). Soil macrofauna as an indicator for evaluating soil based ecosystem services in agricultural landscapes. Acta Oecologica, 100, 103446.

    Article  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.

  • Willy, D. K., Muyanga, M., Mbuvi, J., & Jayne, T. (2019). The effect of land use change on soil fertility parameters in densely populated areas of Kenya. Geoderma, 343, 254–262.

    Article  CAS  Google Scholar 

  • Yang, W., Jin, Y., Sun, T., Yang, Z., Cai, Y., & Yi, Y. (2018). Trade-offs among ecosystem services in coastal wetlands under the effects of reclamation activities. Ecological Indicators, 92, 354–366.

    Article  Google Scholar 

  • Zhou, Y., Hartemink, A. E., Shi, Z., Liang, Z., & Lu, Y. (2019). Land use and climate change effects on soil organic carbon in North and Northeast China. Science of the Total Environment, 647, 1230–1238.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to represent their appreciation to the unknown reviewers and editors for their indispensable comments, suggestions, and explanations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlolah Ahmadi Mirghaed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi Mirghaed, F., Souri, B. Relationships between habitat quality and ecological properties across Ziarat Basin in northern Iran. Environ Dev Sustain 23, 16192–16207 (2021). https://doi.org/10.1007/s10668-021-01343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01343-x

Keywords

Navigation