Skip to main content

Advertisement

Log in

Spatial and seasonal variations in particulate matter and gaseous pollutants around integrated industrial estate (IIE), SIDCUL, Haridwar: a case study

  • Case study
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The holy city of Haridwar is now emerging as a key industrial destination of the north India due to the presence of IIE Haridwar. Due to increased anthropogenic activities like vehicular emissions and industrial discharges in the Haridwar region, air pollution levels has raised greatly. The objectives of the study were (1) to determine the Spatial and seasonal variations of air quality in and around IIE, Haridwar and (2) to find out the Air Pollution Index (API). For this monthly monitoring of pollutant gases (SO2 and NO2) and particulate matter (SPM and RSPM) for two years (2012 and 2013) were done at six ambient air quality monitoring locations, one at each land use area (rural/agricultural, urban residential, protected area, industrial and commercial land use). The average SPM, RSPM, SO2, NO2 in the study area were found as 86.92 µg/m3, 81.04 µg/m3, 23.23 µg/m3, 24.73 µg/m3, respectively. It was observed that the average SPM levels exceed WHO standard limit of 120 µg/m3 at IIE Haridwar during study period. The average API during study period was 50.14 which indicates light air pollution. Meteorological conditions along with the distance from sources, particularly road transportation play a major role in deciding the ambient air quality over a region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdo, N., Khader, Y. S., Abdelrahman, M., Graboski-Bauer, A., Malkawi, M., Al-Sharif, M., & Elbetieha, A. M. (2016). Respiratory health outcomes and air pollution in the Eastern Mediterranean Region: a systematic review. Reviews on Environmental Health, 31, 259–280.

    Article  CAS  Google Scholar 

  • Amann, M., Purohit, P., Bhanarkar, A. D., Bertok, I., Borken-Kleefeld, J., Cofala, J., et al. (2017). Managing future air quality in megacities: A case study for Delhi. Atmospheric Environment, 161, 99–111.

    Article  CAS  Google Scholar 

  • Azmi, S. Z., Latif, M. T., Ismail, A. S., Juneng, L., & Jemain, A. A. (2010). Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia. Air Quality Atmosphere and Health, 3(1), 53–64. https://doi.org/10.1007/s11869-009-0051-1.

    Article  CAS  Google Scholar 

  • Bamniya, B. R., Kapoor, C. S., & Kapoor, K. (2011). Searching for efficient sink for air pollutants: studies on Mangifera indica L. Clean Technologies and Environmental Policy, 14(1), 107–114. https://doi.org/10.1007/s10098-011-0382-0.

    Article  CAS  Google Scholar 

  • Bhanarkar, A., Goyal, S., Sivacoumar, R., & Chalapatirao, C. (2005). Assessment of contribution of SO and NO from different sources in Jamshedpur region, India. Atmospheric Environment, 39(40), 7745–7760. https://doi.org/10.1016/j.atmosenv.2005.07.070.

    Article  CAS  Google Scholar 

  • Bhaskar, B. V. (2010). Atmospheric Particulate Pollutants and their Relationship with Meteorology in Ahmedabad. Aerosol and Air Quality Research. https://doi.org/10.4209/aaqr.2009.10.0069.

    Article  Google Scholar 

  • BIS. (1999). IS 5182 (Part 4): Suspended particulate matter methods for measurement of Air. New Delhi: Bureau of Indian standards.

    Google Scholar 

  • BIS. (2001). IS 5182 (Part 2):2001.Sulphur dioxide Methods for measurement of Air. New Dehi: Bureau of Indian standards.

  • BIS. (2006). IS 5182 (Part 23): Respirable suspended particulate matter (PMIO), Cyconic Flow technique Methods for measurement of Air. New Delhi: Bureau of Indian standards.

    Google Scholar 

  • Cárdenas Rodríguez, M., Dupont-Courtade, L., & Oueslati, W. (2016). Air pollution and urban structure linkages: evidence from European cities. Renewable Sustainable Energy Review, 53, 1–9. https://doi.org/10.1016/j.rser.2015.07.190.

    Article  CAS  Google Scholar 

  • Chauhan, A. (2010). Tree As Bio-Indicator Of Automobile Pollution In Dehradun City: A Case Study. New York Science Journal, 3(6), 88–95.

    Google Scholar 

  • Chauhan, A., & Pawar, M. (2010). Assessment of ambient air quality status in urbanization, industrialization and commercial centers Of Uttarakhand (India). New York Science Journal, 3(7), 85–94.

    Google Scholar 

  • CPCB. (2009). National Ambient Air Quality Standards(NAAQS).

  • Gul, H., Gaga, E. O., Dogeroglu, T., Ozden, O., Ayvaz, O., Ozel, S., & Gungor, G. (2011). Respiratory health symptoms among students exposed to different levels of air pollution in a Turkish city. International Journal of Environmental Research and Public Health, 8(4), 1110–1125. https://doi.org/10.3390/ijerph8041110.

    Article  Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2007). Assessment of seasonal enrichment of heavy metals in respirable suspended particulate matter of a sub-urban Indian city. Environmental Monitoring and Assessment, 128(1–3), 411–420. https://doi.org/10.1007/s10661-006-9335-1.

    Article  CAS  Google Scholar 

  • Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric Environment, 43(1), 51–63. https://doi.org/10.1016/j.atmosenv.2008.09.051.

    Article  CAS  Google Scholar 

  • Jeong, C.-H., McGuire, M. L., Herod, D., Dann, T., Dabek-Zlotorzynska, E., Wang, D., & Evans, G. (2011). Receptor model based identification of PM25 sources in Canadian cities. Atmospheric Pollution Research, 2(2), 158–171. https://doi.org/10.5094/apr.2011.021.

    Article  CAS  Google Scholar 

  • Jha, M., Misra, S., & Bharati, S. K. (2010). A report on seasonal variation in SPM, SOX and NOX in Jharia Coalfieds. The Ecoscan, 4(4), 281–284.

    Google Scholar 

  • Joshi, N., & Bora, M. (2011). Impact of air quality on physiological attributes of certain plants. Report and Opinion, 3(2), 42–47.

    Google Scholar 

  • Joshi, P. C., & Mahadev, S. (2011). Distribution of air pollutants in ambient air of district Haridwar (Uttarakhand), India: A case study after establishment of State Industrial Development Corporation. International Journal of Environmental Sciences, 2(1), 237–258.

    CAS  Google Scholar 

  • Joshi, P. C., & Swami, A. (2007). Physiological responses of some tree species under roadside automobile pollution stress around city of Haridwar. India. The Environmentalist, 27(3), 365–374. https://doi.org/10.1007/s10669-007-9049-0.

    Article  Google Scholar 

  • Kabir, G., & Madugu, A. I. (2010). Assessment of environmental impact on air quality by cement industry and mitigating measures: a case study. Environmental Monitoring and Assessment, 160(1–4), 91–99. https://doi.org/10.1007/s10661-008-0660-4.

    Article  CAS  Google Scholar 

  • Khanna, D. R., Nigam, N. S., & Bhutiani, R. (2013). Monitoring of ambient air quality in relation to traffic density in Bareilly City (UP) India. Journal of Applied and Natural Science, 5(2), 497–502.

    Article  CAS  Google Scholar 

  • Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., et al. (2000). Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet, 356, 795–801.

    Article  Google Scholar 

  • Lohe, R. N., Tyagi, B., Singh, V., Tyagi, P. K., Khanna, D. R., & Bhutiani, R. (2015). A comparative study for air pollution tolerance index of some terrestrial plant species. Global Journal of Environmental Science & Management, 1(4), 315–324.

    CAS  Google Scholar 

  • Maraziotis, E., Sarotis, L., Marazioti, C., & Marazioti, P. (2008). Statistical analysis of inhalable (pm10) and fine particles (pm2.5) concentrations in urban region of Patras Greece. Global NEST Journal, 10, 123–131.

    Google Scholar 

  • Martuzevicius, D., Grinshpun, S. A., Reponen, T., Górny, R. L., Shukla, R., Lockey, J., & LeMasters, G. (2004). Spatial and temporal variations of PM25 concentration and composition throughout an urban area with high freeway density—the Greater Cincinnati study. Atmospheric Environment, 38(8), 1091–1105. https://doi.org/10.1016/j.atmosenv.2003.11.015.

    Article  CAS  Google Scholar 

  • Miranda Ho, Y. C., Show, K. Y., Guo, X. X., Norli, I., Alkarkhi Abbas, F. M., & Morad, N. (2012). Industrial Discharge and Their Effect to the Environment. In P. K.-Y. Show (Ed.), Industrial Waste.

  • Mishra, A. K., Maiti, S. K., & Pal, A. K. (2013). Status of PM10 bound heavy metals in ambient air in certain parts of Jharia coal field Jharkhand India. International Journal of Environmental Sciences. https://doi.org/10.6088/ijes.2013040200003.

    Article  Google Scholar 

  • MoEF. (2009a). Comprehensive Environmental Assessment of Industrial Clusters. New Delhi.

  • Nayak, R., Sett, R., & Biswal, D. (2012). Variation in sensitivity of two economically important plants to thermal power plant emissions, Angul District, Orissa, India. International Research Journal of Environment Sciences, 1(3), 17–26.

    Google Scholar 

  • Nematchoua, M. K., Tchinda, R., Orosa, J. A., & Andreasi, W. A. (2015). Effect of wall construction materials over indoor air quality in humid and hot climate. Journal of Buildings & Engineering, 3, 16–23. https://doi.org/10.1016/j.jobe.2015.05.002.

    Article  Google Scholar 

  • Oiamo, T. H., Luginaah, I. N., Buzzelli, M., Tang, K., Xu, X., Brook, J. R., & Johnson, M. (2012). Assessing the spatial distribution of nitrogen dioxide in London, Ontario. Journal of the Air & Waste Management Association, 62(11), 1335–1345.

    Article  CAS  Google Scholar 

  • Papamanolis, N. (2015). The main characteristics of the urban climate and the air quality in Greek cities. Urban Climate, 12, 49–64. https://doi.org/10.1016/j.uclim.2014.11.003.

    Article  Google Scholar 

  • Pope, C. A., & Dockery, D. W. (2006). Health Effects of fine particulate air pollution: Lines that connect. Journal of Air Waste Management & Association, 1995(56), 709–742.

    Article  Google Scholar 

  • Radhapriya, P., NavaneethaGopalakrishnan, A., Malini, P., & Ramachandran, A. (2012). Assessment of air pollution tolerance levels of selected plants around cement industry, Coimbatore, India. Journal of Environmental Biology, 33(3), 635–641.

    CAS  Google Scholar 

  • Rai, P. K., & Panda, L. L. S. (2015). Roadside plants as bio indicators of air pollution in an industrial region, Rourkela, India. International Journal of Advancements in Research & Technology, 4(1), 14–36.

    Google Scholar 

  • Rai, P. K., Panda, L. L. S., Chutia, B. M., & Singh, M. M. (2013). Comparative assessment of air pollution tolerance index (APTI) in the industrial (Rourkela) and non industrial area (Aizawl) of India: An ecomanagement approach. African Journal of Environmental Science and Technology, 7(10), 944–948. https://doi.org/10.5897/AJEST2013.1532.

    Article  CAS  Google Scholar 

  • Rai, R., Rajput, M., Agrawal, M., & Agrawal, S. B. (2011). Gaseous air pollutants: A review on current and future trends of emissions and impact on Agriculture. Journal of Scientific Research, 55, 77–102.

    Google Scholar 

  • Rao, P. S., Kumar, A., Ansari, M. F., Pipalatkar, P., & Chakrabarti, T. (2009). Air quality impact of sponge iron industries in central India. Bulletin of Environment Contamination and Toxicology, 82(2), 255–259. https://doi.org/10.1007/s00128-008-9519-1.

    Article  CAS  Google Scholar 

  • Root, H. T., Geiser, L. H., Jovan, S., & Neitlich, P. (2015). Epiphytic macrolichen indication of air quality and climate in interior forested mountains of the Pacific Northwest, USA. Ecological Indicators, 53, 95–105. https://doi.org/10.1016/j.ecolind.2015.01.029.

    Article  CAS  Google Scholar 

  • Salam, A., Hossain, T., Siddique, M. N. A., & Alam, A. M. S. (2008). Characteristics of atmospheric trace gases, particulate matter, and heavy metal pollution in Dhaka, Bangladesh. Air Quality, Atmosphere & Health, 1(2), 101–109. https://doi.org/10.1007/s11869-008-0017-8.

    Article  CAS  Google Scholar 

  • Schucht, S., Colette, A., Rao, S., Holland, M., Schöpp, W., Kolp, P., & Brignon, J. M. (2015). Moving towards ambitious climate policies: Monetised health benefits from improved air quality could offset mitigation costs in Europe. Environmental Science & Policy, 50, 252–269. https://doi.org/10.1016/j.envsci.2015.03.001.

    Article  CAS  Google Scholar 

  • Singh, R. K., & Agrawal, M. (2005). Atmospheric depositions around a heavily industrialized area in a seasonally dry tropical environment of India. Environmental Pollution, 138(1), 142–152. https://doi.org/10.1016/j.envpol.2005.02.009.

    Article  CAS  Google Scholar 

  • Singh, R., Barman, S. C., Negi, M. P. S., & Bhargava, S. K. (2008). Metals concentration associated with respirable particulate matter (PM10) in industrial area of eastern U.P, India. Journal of Environmental Biology, 29(1), 63–61.

    CAS  Google Scholar 

  • Sivaramasundaram, K., & Muthusubramanian, P. (2010). A preliminary assessment of PM(10) and TSP concentrations in Tuticorin, India. Air Quality Atmospheric Health, 3(2), 95–102. https://doi.org/10.1007/s11869-009-0055-x.

    Article  CAS  Google Scholar 

  • Tyagi, V., Gurjar, B. R., Joshi, N., & Kumar, P. (2012). PM10 and heavy metals in sub-urban and rural atmospheric environments of Northern India. ASCE Journal of Hazardous, Toxic and Radioactive waste, 16, 175–182.

    Article  CAS  Google Scholar 

  • Zhang, J., Ouyang, Z., Miao, H., & Wang, X. (2011). Ambient air quality trends and driving factor analysis in Beijing, 1983–2007. Journal of Environmental Sciences, 23(12), 2019–2028.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhang, Y., Shi, W., Shang, R., Cheng, R., & Wang, X. (2015). A new approach, based on the inverse problem and variation method, for solving building energy and environment problems: preliminary study and illustrative examples. Building and Environment, 91, 204–218. https://doi.org/10.1016/j.buildenv.2015.02.016.

    Article  Google Scholar 

  • Zhao, J., Chen, S., Wang, H., Ren, Y., Du, K., Xu, W., & Jiang, B. (2012). Quantifying the impacts of socio-economic factors on air quality in Chinese cities from 2000 to 2009. Environmental pollution, 167, 148–154. https://doi.org/10.1016/j.envpol.2012.04.007.

    Article  CAS  Google Scholar 

  • Zheng, S., Yi, H., & Li, H. (2015). The impacts of provincial energy and environmental policies on air pollution control in China. Renew Sust Energ Rev, 49, 386–394. https://doi.org/10.1016/j.rser.2015.04.088.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Head Department of Zoology and Environmental Sciences, Gurukula Kangri Vishwavidyalaya, Haridwar for providing laboratory facilities. The second author is thankful to the University Grants Commission (UGC) for the research grant (F.4-1/2006(BSR)/7-70/2007) under UGC-BSR Research Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Tyagi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest arising from the direct application of this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhutiani, R., Kulkarni, D.B., Khanna, D.R. et al. Spatial and seasonal variations in particulate matter and gaseous pollutants around integrated industrial estate (IIE), SIDCUL, Haridwar: a case study. Environ Dev Sustain 23, 15619–15638 (2021). https://doi.org/10.1007/s10668-021-01256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01256-9

Keywords

Navigation