Skip to main content

Advertisement

Log in

Geochemical mobility of ions in groundwater from the tropical western coast of Maharashtra, India: implication to groundwater quality

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Groundwater quantity and quality are equally important for the sustainable management of water resources in coastal parts of the world. Therefore, it is essential to study the geochemical mobility of ions in groundwater and their spatial variation in western coastal part of Maharashtra, India. A total of sixty-five (65) groundwater samples were collected from different dug and bore wells and spring samples and subjected to physicochemical analysis using standard methods of APHA. The analytical results inferred that groundwater is acidic to alkaline in nature. The order of abundance of ions in the groundwater samples is Ca2+ > Na+ > Mg2+ > K+ and HCO3 > Cl > SO−24>NO3 > F. The piper trilinear diagram reveals that the ground water is of Ca-HCO3 and mixed Ca–Cl-HCO3 types. Gibbs diagrams indicate rock and precipitation dominance which is controlling the groundwater chemistry. As compared with World Health Organization drinking standards, groundwater is good for drinking; however, a few samples surpass the desirable limit of pH, HCO3 and F. Similarly, suitability of groundwater for irrigation purpose is also studied using USSL diagram, SAR and %Na and it was found that all groundwater samples are suitable for irrigation purpose, showing good to excellent quality. Conversely, Kelley’s ratio suggests that 78.47% of water samples are unsuitable for irrigation. Multiple linear regressions model is used for predicting the fluoride content and confirming the efficiency of the proposed model based on R   (0.72) and RMSE (0.035) values. Furthermore, correlation analysis, cluster and principal component analysis were performed to find the significant parameters that influence groundwater chemistry. The cluster analysis explored that all the parameters are associated with EC and PCA which shows four factors are found to be significant which influenced groundwater chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • A.P.H.A. (2005). Methods for the examination of water and wastewater. American Public Health Association.

  • Adimalla, N., & Li, P. (2018). Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Human and Ecological Risk Assessment: An International Journal, 24, 1–23. https://doi.org/10.1080/10807039.2018.1480353.

    Article  CAS  Google Scholar 

  • Arslan, H. (2017). Determination of temporal and spatial variability of groundwater irrigation quality using geostatistical techniques on the coastal aquifer of Çarşamba Plain, Turkey, from 1990 to 2012. Environmental Earth Sciences,76(1), 38.

    Article  CAS  Google Scholar 

  • Aryafar, A., & Ardejani, F. D. (2013). R-mode factor analysis, a popular multivariate statistical technique to evaluate water quality in Khaf-Sangan basin, Mashhad, Northeast of Iran. Arabian Journal of Geosciences,6(3), 893–900.

    Article  CAS  Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1994). Water quality for agriculture. FAO. Irrigation and Drainage Paper, 29. Rome: FAO, 174 p.

  • Bhuiyan, M. A. H., Bodrud-Doza, M., Islam, A. T., Rakib, M. A., Rahman, M. S., & Ramanathan, A. L. (2016). Assessment of groundwater quality of Lakshimpur district of Bangladesh using water quality indices, geostatistical methods, and multivariate analysis. Environmental Earth Sciences,75(12), 1–23.

    Article  CAS  Google Scholar 

  • Brindha, K., & Elango, L. (2013). Geochemistry of fluoride rich groundwater in a weathered granitic rock region, Southern India. Water Quality, Exposure and Health,5(3), 127–138.

    Article  CAS  Google Scholar 

  • Brindha, K., Rajesh, R., Murugan, R., & Elango, L. (2010). Natural and anthropogenic influence on the fluoride and nitrate concentration of groundwater in parts of Nalgonda district, Andhra Pradesh, India. Journal of Applied Geochemists,12(2), 231–241.

    CAS  Google Scholar 

  • CGWB. (1992). General guidelines for the evaluation of Groundwater Recharge Schemes with special reference to Basaltic terrain.

  • CGWB. (2009). Groundwater information, Sindhudurg district, Maharashtra. Technical Report, 1625/DB/2009.

  • CGWB. (2014). Groundwater information, Sindhudurg District, Maharashtra. Technical Report, 1835/DB/2014.

  • Chidambaram, S., Ramanathan, A. L., Prasanna, M. V., Lognatan, D., Srinivasamoorthy, K., & Anandhan, P. (2008). Study on the impact of tsunami on shallow groundwater from Portnova to Pumpuhar, using geoelectrical technique-south east coast of India.

  • Chitsazan, M., Aghazadeh, N., Mirzaee, Y., & Golestan, Y. (2017). Hydrochemical characteristics and the impact of anthropogenic activity on groundwater quality in suburban area of Urmia city, Iran. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-017-0039-1.

    Article  Google Scholar 

  • Das, S., & Nag, S. K. (2015). Deciphering groundwater quality for irrigation and domestic purposes—A case study in Suri I and II blocks, Birbhum District, West Bengal, India. Journal of Earth System Science,124(5), 965–992.

    Article  CAS  Google Scholar 

  • Deshpande, G. G. (1998). Geology of Maharashtra, Geological society of India, Bangalore, 223p.

  • Gaikwad, S. K. (2012). Geochemistry of fluoride bearing ground waters from the Karli River Basin, Southern part of Sindhudurg District, Maharashtra. Doctoral dissertation, Ph.D. thesis, University of Pune.

  • Gaikwad, S. K., & Pawar, N. J. (2008). Spatio-temporal geochemical distinctiveness of groundwaters allied to lithological diversity in the area between Karli and Terekhol Rivers, Southern part of Coastal Maharashtra, India. In International Groundwater Conference on “groundwater dynamics and global change” Organized by University of Rajasthan, Jaipur, India in March, 2008.

  • Gaikwad, S. K., & Pawar, N. J. (2012). Imprints of lithological diversity on the chemical composition of groundwater from Sindhudurg District, Maharashtra. Memoirs of the Journal-Geological Society of India,60, 109–126.

    Google Scholar 

  • Geological Survey of India (GSI). (2006). District Resource Map of Sindhudurg District.

  • Ghalib, H. B. (2017). Groundwater chemistry evaluation for drinking and irrigation utilities in east Wasit province, Central Iraq. Applied Water Science,7(7), 3447–3467.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science,170(3962), 1088–1090.

    Article  CAS  Google Scholar 

  • Gnanachandrasamy, G., Dushiyanthan, C., Rajakumar, T. J., & Zhou, Y. (2018). Assessment of hydrogeochemical characteristics of groundwater in the lower Vellar river basin: Using Geographical Information System (GIS) and Water Quality Index (WQI). Environment, Development and Sustainability. https://doi.org/10.1007/s10668-018-0219-7.

    Article  Google Scholar 

  • Gopinath, S., Srinivasamoorthy, K., Saravanan, K., & Prakash, R. (2018). Discriminating groundwater salinization processes in coastal aquifers of southeastern India: Geophysical, hydrogeochemical and numerical modeling approach. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-018-0143-x.

    Article  Google Scholar 

  • GSDA. (1984). Groundwater Survey Development Agency, Govt. of Maharashtra. Systematic Hydrological Survey Reports of Sindhudurg District (unpublished).

  • Handa, B. K. (1975). Geochemistry and genesis of fluoride-containing ground waters in India. Groundwater,13(3), 275–281.

    Article  CAS  Google Scholar 

  • Hassen, I., Hamzaoui-Azaza, F., & Bouhlila, R. (2016). Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: Case of Oum Ali-Thelepte aquifer, central Tunisia. Environmental Monitoring and Assessment,188(3), 135.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water (Vol. 2254). Department of the Interior, US Geological Survey.

  • Hem, J. D. (1991). Study and interpretation of the chemical characteristics of natural water. (Vol. 2254, 3rd edn). Jodhpur: Scientific Publishers.

  • Hounslow, A. (1995). Water quality data: Analysis and interpretation. Boca Raton: CRC Press.

    Google Scholar 

  • Islam, A. T., Shen, S., Bodrud-Doza, M. D., & Rahman, M. S. (2017). Assessing irrigation water quality in Faridpur district of Bangladesh using several indices and statistical approaches. Arabian Journal of Geosciences,10(19), 418.

    Article  CAS  Google Scholar 

  • Jebastina, N., & Arulraj, G. P. (2016). Contamination analysis of groundwater in Coimbatore district, India: A statistical approach. Environmental Earth Sciences,75(22), 1447.

    Article  CAS  Google Scholar 

  • Jiang, L., Yao, Z., Liu, Z., Wang, R., & Wu, S. (2015). Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau. Journal of Geochemical Exploration, 155, 76–83.

    Article  CAS  Google Scholar 

  • Kadam, A. K., Jaweed, T. H., Umrikar, B. N., Hussain, K., & Sankhua, R. N. (2017). Morphometric prioritization of semi-arid watershed for plant growth potential using GIS technique. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-017-0386-9.

    Article  Google Scholar 

  • Kadam, A. K., Kale, S. S., Pande, N. N., Pawar, N. J., & Sankhua, R. N. (2012). Identifying potential rainwater harvesting sites of a semi-arid, basaltic region of Western India, using SCS-CN method. Water Resources Management,26(9), 2537–2554. https://doi.org/10.1007/s11269-012-0031-3.

    Article  Google Scholar 

  • Kadam, A., Karnewar, A. S., Umrikar, B., & Sankhua, R. N. (2018). Hydrological response-based watershed prioritization in semiarid, basaltic region of western India using frequency ratio, fuzzy logic and AHP method. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-018-0104-4.

    Article  Google Scholar 

  • Kale, S. S., Kadam, A. K., Kumar, S., & Pawar, N. J. (2010). Evaluating pollution potential of leachate from landfill site, from the Pune metropolitan city and its impact on shallow basaltic aquifers. Environmental Monitoring and Assessment,162, 327–346. https://doi.org/10.1007/s10661-009-0799-7.

    Article  CAS  Google Scholar 

  • Kale, S., & Pawar, N. J. (2017). Fluoride accumulation in groundwater from semi-arid part of Deccan Volcanic Province, India: A cause of urolithiasis outbreak. Hydrospatial Analysis,1, 9–17. https://doi.org/10.21523/gcj3.17010102.

    Article  Google Scholar 

  • Kaliraj, S., Chandrasekar, N., Peter, T. S., Selvakumar, S., & Magesh, N. S. (2015). Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model. Environmental Monitoring and Assessment, 187(1), 4073.

    Article  CAS  Google Scholar 

  • Kammoun, S., Trabelsi, R., Re, V., Zouari, K., & Henchiri, J. (2018). Groundwater quality assessment in semi-arid regions using integrated approaches: The case of Grombalia aquifer (NE Tunisia). Environmental Monitoring and Assessment, 190(2), 87.

    Article  CAS  Google Scholar 

  • Kanagaraj, G., & Elango, L. (2016). Hydrogeochemical processes and impact of tanning industries on groundwater quality in Ambur, Vellore district, Tamil Nadu, India. Environmental Science and Pollution Research,23(23), 24364–24383.

    Article  CAS  Google Scholar 

  • Kanagaraj, G., Suganthi, S., Elango, L., & Magesh, N. S. (2018). Assessment of groundwater potential zones in Vellore district, Tamil Nadu, India using geospatial techniques. Earth Science Informatics. https://doi.org/10.1007/s12145-018-0363-5.

    Article  Google Scholar 

  • Kelley, W. P. (1951). Alkali soils; their formation, properties, and reclamation (No. 04; RMD, S595 K4.).

  • Kirda, C. (1997). Assessment of irrigation water quality. Options Mediterraneennes Serie A: Seminaires Mediterraneens (CIHEAM).

  • Kumar, P. S., & James, E. J. (2013). Physicochemical parameters and their sources in groundwater in the Thirupathur region, Tamil Nadu, South India. Applied Water Science,3(1), 219–228.

    Article  CAS  Google Scholar 

  • Kwon, S. M., Min, B. K., Son, J. S., Kim, K. H., & Kwon, T. Y. (2016). Durability of resin bond strength to dental noble metal–ceramic alloys conditioned with novel mercaptosilane-based primer systems. Journal of Adhesion Science and Technology,30(5), 506–519.

    Article  CAS  Google Scholar 

  • Li, P., Qian, H., Wu, J., Zhang, Y., & Zhang, H. (2013). Major ion chemistry of shallow groundwater in the Dongsheng Coalfield, Ordos Basin, China. Mine Water and the Environment, 32(3), 195–206.

    Article  CAS  Google Scholar 

  • Machiwal, D., & Jha, M. K. (2015). Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. Journal of Hydrology: Regional Studies,4, 80–110.

    Google Scholar 

  • Mayo, A. L., & Loucks, M. D. (1995). Solute and isotopic geochemistry and ground water flow in the central Wasatch Range, Utah. Journal of Hydrology,172(1–4), 31–59.

    Article  CAS  Google Scholar 

  • Mertler, C. A., & Vannatta, R. A. (2005). Advanced and multivariate statistical methods. Glendale: Pyrczak Publishing.

    Google Scholar 

  • Mukate, S., Panaskar, D., Wagh, V., Muley, A., Jangam, C., & Pawar, R. (2017). Impact of anthropogenic inputs on water quality in Chincholi industrial area of Solapur, Maharashtra, India. Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2017.11.001.

    Article  Google Scholar 

  • Mukate, S. V., Panaskar, D. B., Wagh, V. M., & Pawar, R. S. (2015). Assessment of groundwater quality for drinking and irrigation purpose: A case study of Chincholikati MIDC Area, Solapur (MS), India. SRTMUs Journal of Science, 4(1), 58–69.

    Google Scholar 

  • Nikumbh, J. D. (1997). Geochemistry of groundwater from Behedi basin, District Nashik, Maharashtra. (Doctoral dissertation, Ph. D thesis, University of Pune.

  • Panaskar, D. B., Wagh, V. M., Muley, A. A., Mukate, S. V., Pawar, R. S., & Aamalawar, M. L. (2016). Evaluating groundwater suitability for the domestic, irrigation, and industrial purposes in Nanded Tehsil, Maharashtra, India, using GIS and statistics. Arabian Journal of Geosciences,9(13), 615.

    Article  CAS  Google Scholar 

  • Pawar, N. J., & Kale, V. S. (2006). Waterfall tufa deposits from the Deccan Basalt Province, India: Implications for weathering of basalts in the semi-arid Tropics (with 9 figures and 2 tables). ZEITSCHRIFT FUR GEOMORPHOLOGIE SUPPLEMENTBAND,145, 17.

    Google Scholar 

  • Pawar, N. J., Pawar, J. B., Kumar, S., & Supekar, A. (2008). Geochemical eccentricity of ground water allied to weathering of basalts from the Deccan Volcanic Province, India: Insinuation on CO2 consumption. Aquatic Geochemistry,14(1), 41–71.

    Article  CAS  Google Scholar 

  • Pearson, K. (1896). Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London Series A, containing papers of a mathematical or physical character,187, 253–318.

    Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union,25(6), 914–928.

    Article  Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Gireesh, T. V., & Ali, T. J. (2011). A study on hydrochemical characteristics of surface and sub-surface water in and around Perumal Lake, Cuddalore district, Tamil Nadu, South India. Environmental Earth Sciences,63(1), 31–47.

    Article  CAS  Google Scholar 

  • Prasanth, S. S., Magesh, N. S., Jitheshlal, K. V., Chandrasekar, N., & Gangadhar, K. (2012). Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Applied Water Science,2(3), 165–175.

    Article  CAS  Google Scholar 

  • Raghunath, H. M. (1987). Groundwater (2nd ed.). New Delhi: New Age International Publishers.

    Google Scholar 

  • Rao, N. S. (2006). Seasonal variation of groundwater quality in a part of Guntur District, Andhra Pradesh, India. Environmental Geology,49(3), 413–429.

    Article  CAS  Google Scholar 

  • Rasouli, F., Pouya, A. K., & Cheraghi, S. A. M. (2012). Hydrogeochemistry and water quality assessment of the Kor-Sivand Basin, Fars Province, Iran. Environmental monitoring and assessment,184(8), 4861–4877.

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Agriculture Handbook,60, 1–6.

    Google Scholar 

  • Saager, R., & Sinclair, A. J. (1974). Factor analysis of stream sediment geochemical data from the Mount Nansen area, Yukon Territory, Canada. Mineralium Deposita,9(3), 243–252.

    Article  CAS  Google Scholar 

  • Sahu, U., Panaskar, D., Wagh, V., & Mukate, S. (2018). An extraction, analysis, and prioritization of Asna river sub-basins, based on geomorphometric parameters using geospatial tools. Arabian Journal of Geosciences,11(17), 517.

    Article  Google Scholar 

  • Saleh, S. M. K., Al-Alaiy, S. H. G., Abdul-Razzak, B. I., & Nasher, G. S. H. (2017). Evaluation of groundwater quality and its suitability for drinking and agricultural use of rural areas for Zabid Directorate Wadi Zabid, Hodiedah, Yemen. Journal of Scientific and Engineering Research,4(7), 10–24.

    CAS  Google Scholar 

  • Sarkar, P. K., & Soman, G. R. (1986). Geology of the area around Katta, Sindhudurg District, Maharashtra. Based on aerospace data. Journal of the Indian Society of Remote Sensing,14(2), 43–51.

    Article  Google Scholar 

  • Selvam, S. (2015). A preliminary investigation of lithogenic and anthropogenic influence over fluoride ion chemistry in the groundwater of the southern coastal city, Tamilnadu, India. Environmental Monitoring and Assessment,187(3), 106.

    Article  CAS  Google Scholar 

  • Shanmugasundharam, A., Kalpana, G., Mahapatra, S. R., Sudharson, E. R., & Jayaprakash, M. (2017). Assessment of Groundwater quality in Krishnagiri and Vellore Districts in Tamil Nadu, India. Applied Water Science,7(4), 1869–1879.

    Article  CAS  Google Scholar 

  • Singaraja, C., Chidambaram, S., Jacob, N., Ezhilarasan, E., Velmurugan, C., Manikandan, M., et al. (2016). Taxonomy of groundwater quality using multivariate and spatial analyses in the Tuticorin District, Tamil Nadu, India. Environment, Development and Sustainability,18(2), 393–429.

    Article  Google Scholar 

  • Singh, C. K., Kumar, A., Shashtri, S., Kumar, A., Kumar, P., & Mallick, J. (2017). Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. Journal of Geochemical Exploration, 175, 59–71.

    Article  CAS  Google Scholar 

  • Singh, V. B., Ramanathan, A. L., Pottakkal, J. G., & Kumar, M. (2014). Seasonal variation of the solute and suspended sediment load in Gangotri glacier meltwater, central Himalaya, India. Journal of Asian Earth Sciences,79, 224–234.

    Article  Google Scholar 

  • Subramani, T., Rajmohan, N., & Elango, L. (2010). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring and Assessment,162(1), 123–137.

    Article  CAS  Google Scholar 

  • Tiwari, A. K., De Maio, M., Singh, P. K., & Singh, A. K. (2016). Hydrogeochemical characterization and groundwater quality assessment in a coal mining area, India. Arabian Journal of Geosciences,9(3), 177.

    Article  CAS  Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology (2nd ed.). New York: Wiley.

    Google Scholar 

  • Touhari, F., Meddi, M., Mehaiguene, M., & Razack, M. (2015). Hydrogeochemical assessment of the Upper Cheliff groundwater (North West Algeria). Environmental Earth Sciences,73(7), 3043–3061.

    Article  CAS  Google Scholar 

  • Varade, A. M., Yenkie, R. O., Shende, R. R., Golekar, R. B., Wagh, V. M., & Khandare, H. W. (2018). Assessment of water quality for the groundwater resources of urbanized part of the Nagpur District, Maharashtra (India). American Journal of Water Resources,6(3), 89–111.

    CAS  Google Scholar 

  • Vasant, W., Dipak, P., Aniket, M., Ranjitsinh, P., Shrikant, M., Nitin, D., et al. (2016). GIS and statistical approach to assess the groundwater quality of Nanded Tehsil (MS) India. In Proceedings of first international conference on information and communication technology for intelligent systems (Vol. 1, pp. 409–417). Springer International Publishing.

  • Wagh, V., Panaskar, D., Aamalawar, M. L., Lolage, Y. P., Mukate, S., & Narshimma, A. (2018a). Hydrochemical characterisation and groundwater suitability for drinking and irrigation uses in Semiarid Region of Nashik, Maharashtra, India. Hydrospatial Analysis,2(1), 43–60. https://doi.org/10.21523/gcj3.18020104.

    Article  Google Scholar 

  • Wagh, V. M., Panaskar, D. B., & Muley, A. A. (2017a). Estimation of nitrate concentration in groundwater of Kadava River Basin-Nashik District, Maharashtra, India by using artificial neural network model. Modeling Earth Systems and Environment,3(1), 36.

    Article  Google Scholar 

  • Wagh, V. M., Panaskar, D. B., Muley, A. A., & Mukate, S. V. (2017b). Groundwater suitability evaluation by CCME WQI model for Kadava River Basin, Nashik, Maharashtra, India. Modeling Earth Systems and Environment, 3(2), 557–565.

    Article  Google Scholar 

  • Wagh, V., Panaskar, D., Muley, A., Mukate, S., & Gaikwad, S. (2018b). Neural network modelling for nitrate concentration in groundwater of Kadava River Basin, Nashik, Maharashtra, India. Groundwater for Sustainable Development,1, 2. https://doi.org/10.1016/j.gsd.2017.12.012.

    Article  Google Scholar 

  • Wagh, V. M., Panaskar, D. B., Muley, A. A., Mukate, S. V., Lolage, Y. P., & Aamalawar, M. L. (2016a). Prediction of groundwater suitability for irrigation using artificial neural network model: A case study of Nanded tehsil, Maharashtra, India. Modeling Earth Systems and Environment,2(4), 196.

    Article  Google Scholar 

  • Wagh, V. M., Panaskar, D. B., Varade, A. M., Mukate, S. V., Gaikwad, S. K., Pawar, R. S., et al. (2016b). Major ion chemistry and quality assessment of the groundwater resources of Nanded tehsil, a part of southeast Deccan Volcanic Province, Maharashtra, India. Environmental Earth Sciences,75(21), 1418.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO). (2011). Guideline for drinking water quality (Vol. 1, 14 ed.).

  • Zheng, L. Y., Yu, H. B., & Wang, Q. S. (2016). Application of multivariate statistical techniques in assessment of surface water quality in Second Songhua River basin, China. Journal of Central South University,23(5), 1040–1051.

    Article  CAS  Google Scholar 

  • Zhu, B., Wang, X., & Rioual, P. (2017). Multivariate indications between environment and ground water recharge in a sedimentary drainage basin in northwestern China. Journal of Hydrology,549, 92–113.

    Article  Google Scholar 

Download references

Acknowledgements

This research work was funded by SPPU-ISRO STC cell, Savitribai Phule Pune University. The funding project number is PU/ISRO STC/1541 dated June 02, 2014. The authors wish to thank Head, Department of Geology, for providing laboratorial facilities. The authors would like to express their gratitude to the anonymous reviewers for their constructive suggestion for strengthening the manuscript quality.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satyajit Gaikwad or Ajaykumar Kadam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, S., Gaikwad, S., Meshram, D. et al. Geochemical mobility of ions in groundwater from the tropical western coast of Maharashtra, India: implication to groundwater quality. Environ Dev Sustain 22, 2591–2624 (2020). https://doi.org/10.1007/s10668-019-00312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-019-00312-9

Keywords

Profiles

  1. Vasant Wagh
  2. Ajaykumar Kadam