Skip to main content

Advertisement

Log in

Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, Northern Borneo

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Soil loss has been quantified and land area categorized for soil erosion vulnerability in a partially forested subwatershed of the Baram River basin (Sarawak, Malaysia) using Revised Universal Soil Loss Equation, which considers climatic and terrain variables. The quantification of soil loss was achieved by integrating the parameters related to rainfall (R), soils (K), terrain (LS) and land use practices (C). The resultant maps of soil erosion show soil losses ranging from 0 to 1190 t ha−1 year−1 with a mean of 28 t ha−1 year−1 in the 1029 km2 Sungai Patah subwatershed study area. The subwatershed was mapped using ArcGIS into five classes of soil erosion risk vulnerability. Among the five classes identified, very high and critically vulnerable zones show linear distribution in some areas which together constitute 13% of the total study area. High and medium erosion vulnerable zones cover 30 and 19%, respectively. Low erosion risk zones cover 36% of the total area. Mean soil loss assessed for each LULC (land use/land cover) class indicates that barren land with high slopes contributes comparatively high rates of soil loss (343 t ha−1 year−1). Field surveys in the study region have enabled identification of erosion hot spots, such as logging areas, shifting cultivation areas and road construction, which intensely modify the terrain, and explain the linearity of critical and severe erosion risk features. The output of the present study will help to frame appropriate management strategies to minimize erosion through implementation of alternative methods in logging activities and terrain management programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexandrov, Y. U. L. I. A., Laronne, J. B., & Reid, I. (2003). Suspended sediment transport in flash floods of the semiarid northern Negev, Israel. International Association of Hydrological Sciences, Publication, 278, 346–352.

    Google Scholar 

  • Arnoldous, H. M. J. (1980). An approximation of the rainfall factor in the USLE in assessment of Erosion. Chichester: Wiley.

    Google Scholar 

  • Bannari, A., Kadhem, G., El-Battay, A., Hameid, N. A., & Rouai, M. (2016). Assessment of land erosion and sediment accumulation caused by runoff after a flash-flooding storm using topographic profiles and spectral indices. Advances in Remote Sensing, 5(04), 315.

    Article  Google Scholar 

  • Ben Slimane, A., Raclot, D., Evrard, O., Sanaa, M., Lefevre, I., & Le Bissonnais, Y. (2016). Relative contribution of rill/interrill and gully/channel erosion to small reservoir siltation in Mediterranean environments. Land Degradation and Development, 27(3), 785–797. doi:10.1002/ldr.2387.

    Article  Google Scholar 

  • Bhandari, K. P., Aryal, J., & Darnsawasdi, R. (2015). A geospatial approach to assessing soil erosion in a watershed by integrating socio-economic determinants and the RUSLE model. Natural Hazards, 75(1), 321–342.

    Article  Google Scholar 

  • Bisantino, T., Bingner, R., Chouaib, W., Gentile, F., & Trisorio Liuzzi, G. (2015). Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the ANNAGNPS model. Land Degradation and Development, 26(4), 340–355.

    Article  Google Scholar 

  • Borrelli, P., Märker, M., & Schütt, B. (2015). Modelling post-tree-harvesting soil erosion and sediment deposition potential in the Turano river basin (Italian Central Apennine). Land Degradation and Development, 26(4), 356–366.

    Article  Google Scholar 

  • Bouraoui, F., & Dillaha, T. A. (1996). ANSWERS-2000: Runoff and sediment transport model. Journal of Environmental Engineering, 122(6), 493–502.

    Article  CAS  Google Scholar 

  • Bracken, L. J., & Croke, J. (2007). The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrological Processes, 21(13), 1749–1763.

    Article  Google Scholar 

  • Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., et al. (2015). The interdisciplinary nature of SOIL. Soil, 1(1), 117.

    Article  Google Scholar 

  • Bruun, T. B., Elberling, B., de Neergaard, A., & Magid, J. (2015). Organic carbon dynamics in different soil types after conversion of forest to agriculture. Land Degradation and Development, 26(3), 272–283. doi:10.1002/ldr.2205.

    Article  Google Scholar 

  • Buendia, C., Batalla, R. J., Sabater, S., Palau, A., & Marcé, R. (2016). Runoff trends driven by climate and afforestation in a Pyrenean basin. Land Degradation and Development, 27(3), 823–838. doi:10.1002/ldr.2384.

    Article  Google Scholar 

  • Burrough, P. A., & McDonnell, R. A. (1998). Principles of GIS. London: Oxford University Press.

    Google Scholar 

  • Cerdà, A. (1998). Effect of climate on surface flow along a climatological gradient in Israel: A field rainfall simulation approach. Journal of Arid Environments, 38(2), 145–159. doi:10.1006/jare.1997.0342.

    Article  Google Scholar 

  • Cerdà, A. (1999). Parent material and vegetation affect soil erosion in eastern Spain. Soil Science Society of America Journal, 63(2), 362–368.

    Article  Google Scholar 

  • Cerdà, A., & García-Fayos, P. (1997). The influence of slope angle on sediment, water and seed losses on badland landscapes. Geomorphology, 18(2), 77–90.

    Article  Google Scholar 

  • Cerdà, A., & García-Fayos, P. (2002). the influence of seed size and shape on their removal by water erosion. CATENA, 48(4), 293–301. doi:10.1016/S0341-8162(02)00027-9.

    Article  Google Scholar 

  • Cho, J., Park, S., & Im, S. (2008). Evaluation of Agricultural Nonpoint Source (AGNPS) model for small watersheds in Korea applying irregular cell delineation. Agricultural Water Management, 95(4), 400–408.

    Article  Google Scholar 

  • De Jong, S. M., & Riezebos, H. T. (1997). SEMMED: A distributed approach to soil erosion modelling. Remote Sensing, 96, 199–204.

    Google Scholar 

  • de Neergaard, A., Magid, J., & Mertz, O. (2008). Soil erosion from shifting cultivation and other smallholder land use in Sarawak, Malaysia. Agriculture, Ecosystems and Environment, 125(1), 182–190.

    Article  Google Scholar 

  • Demirci, A., & Karaburun, A. (2012). Estimation of soil erosion using RUSLE in a GIS framework: A case study in the Buyukcekmece Lake watershed, northwest Turkey. Environmental Earth Science, 66(3), 903–913.

    Article  Google Scholar 

  • Desmet, P. J. J., & Govers, G. (1996). A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51(5), 427–433.

    Google Scholar 

  • Eskandari, H., Borji, M., Khosravi, H., & Mesbahzadeh, T. (2016). Desertification of forest, range and desert in Tehran province, affected by climate change. Solid Earth, 7(3), 905–915. doi:10.5194/se-7-905-2016.

    Article  Google Scholar 

  • Fernández, C., & Vega, J. A. (2016). Evaluation of RUSLE and PESERA models for predicting soil erosion losses in the first year after wildfire in NW Spain. Geoderma, 273, 64–72.

    Article  Google Scholar 

  • Gabriels, D., Ghekiere, G., Schiettecatte, W., & Rottiers, I. (2003). Assessment of USLE cover-management C-factors for crop rotation systems on arable farms in the Kemmelbeek watershed, Belgium. Soil and Tillage Research, 74(1), 47–53.

    Article  Google Scholar 

  • Gassman, P. W., Sadeghi, A. M., & Srinivasan, R. (2014). Applications of the SWAT model special section: Overview and insights. Journal of Environmental Quality, 43(1), 1–8.

    Article  CAS  Google Scholar 

  • Gessesse, B., Bewket, W., & Bräuning, A. (2015). Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degradation and Development, 26(7), 711–724.

    Article  Google Scholar 

  • Gómez-Acata, E. S., Valencia-Becerril, I., Valenzuela-Encinas, C., Velásquez-Rodríguez, A. S., Navarro-Noya, Y. E., Montoya-Ciriaco, N., et al. (2016). Deforestation and cultivation with maize (Zea Mays L.) has a profound effect on the bacterial community structure in soil. Land Degradation and Development, 27(4), 1122–1130. doi:10.1002/ldr.2328.

    Article  Google Scholar 

  • Gregersen, B., Aalbæk, J., Lauridsen, P.E., Kaas, M., Lopdrup, U., Veihe, A., & van der Keur, P. (2003). Land use and soil erosion in Tikolod, Sabah, Malaysia. ASEAN Review of Biodiversity and Environmental conservation, (ARBEC), pp. 1–11.

  • Hao, C. H. E. N., Oguchi, T., & Pan, W. U. (2017). Assessment for soil loss by using a scheme of alterative sub-models based on the RUSLE in a Karst Basin of Southwest China. Journal of Integrative Agriculture, 16(2), 377–388.

    Article  Google Scholar 

  • Henderson-Sellers, A., Dickinson, R. E., Durbidge, T. B., Kennedy, P. J., McGuffie, K., & Pitman, A. J. (1993). Tropical deforestation: Modeling local- to regional-scale climate change. Journal Geophysical Research, 98(D4), 7289–7315. doi:10.1029/92JD02830.

    Article  Google Scholar 

  • Jiang, L., Yao, Z., Liu, Z., Wu, S., Wang, R., & Wang, L. (2015). Estimation of soil erosion in some sections of Lower Jinsha River based on RUSLE. Natural Hazards, 76(3), 1831–1847.

    Article  Google Scholar 

  • Kamaludin, H., Lihan, T., Ali Rahman, Z., Mustapha, M. A., Idris, W. M. R., & Rahim, S. A. (2013). Integration of remote sensing, RUSLE and GIS to model potential soil loss and sediment yield (SY). Hydrology and Earth System Science Discussions, 10(4), 4567–4596.

    Article  Google Scholar 

  • Karaburun, A. (2010). Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean Journal of Applied Science, 3(1), 77–85.

    Google Scholar 

  • Karamage, F., Zhang, C., Kayiranga, A., Shao, H., Fang, X., Ndayisaba, F., et al. (2016). USLE -based assessment of soil erosion by water in the Nyabarongo River Catchment, Rwanda. International journal of environmental research and public health, 13(8), 835.

    Article  Google Scholar 

  • Keesstra, S. D. (2007). Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surface Processes and Landforms, 32(1), 49–65. doi:10.1002/esp.1360.

    Article  Google Scholar 

  • Keesstra, S. D., Geissen, V., Mosse, K., Piiranen, S., Scudiero, E., Leistra, M., et al. (2012). Soil as a filter for groundwater quality. Current Opinion in Environmental Sustainability, 4(5), 507–516.

    Article  Google Scholar 

  • Keesstra, S. D., Quinton, J. N., van der Putten, W. H., Bardgett, R. D., & Fresco, L. O. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development goals. Soil, 2(2), 111.

    Article  Google Scholar 

  • Kirkby, M. J., Irvine, B. J., Jones, R. J., & Govers, G. (2008). The PESERA coarse scale erosion model for Europe. I.-Model rationale and implementation. European Journal of Soil Science, 59(6), 1293–1306.

    Article  Google Scholar 

  • Labrière, N., Locatelli, B., Laumonier, Y., Freycon, V., & Bernoux, M. (2015). Soil erosion in the humid tropics: A systematic quantitative review. Agriculture, Ecosystems & Environment, 203, 127–139.

    Article  Google Scholar 

  • Licciardello, F., Toscano, A., Cirelli, G. L., Consoli, S., & Barbagallo, S. (2016). Evaluation of sediment deposition in a Mediterranean reservoir: Comparison of long term bathymetric measurements and SWAT estimations. Land Degradation and Development. doi:10.1002/ldr.2557.

    Google Scholar 

  • Liu, B. Y., Nearing, M. A., Shi, P. J., & Jia, Z. W. (2000). Slope length effects on soil loss for steep slopes. Soil Science Society of America Journal, 64(5), 1759–1763.

    Article  CAS  Google Scholar 

  • López-Vicente, M., Quijano, L., Palazón, L., Gaspar, L., & Navas, A. (2015). Assessment of soil redistribution at catchment scale by coupling a soil erosion model and a sediment connectivity index (Central Spanish Pre-Pyrenees). Cuadernos De Investigacion Geografica, 41(1), 127–147. doi:10.18172/cig.2649.

    Article  Google Scholar 

  • Lu, J., Cui, X., Chen, X., Sauvage, S., & Perez, J. M. S. (2016). Evaluation of hydrological response to extreme climate variability using SWAT model: application to the Fuhe basin of Poyang Lake watershed, China. Hydrology Research, nh2016115.

  • Lu, D., Li, G., Valladares, G. S., & Batistella, M. (2004). Mapping soil erosion risk in Rondonia, Brazilian Amazonia: Using RUSLE, remote sensing and GIS. Land Degradation and Development, 15(5), 499–512.

    Article  Google Scholar 

  • Mekonnen, M., Keesstra, S. D., Baartman, J. E., Ritsema, C. J., & Melesse, A. M. (2015). Evaluating sediment storage dams: Structural off-site sediment trapping measures in northwest Ethiopia. Cuadernos de Investigación Geográfica, 41, 7–22.

    Article  Google Scholar 

  • Meusburger, K., Konz, N., Schaub, M., & Alewell, C. (2010). Soil erosion modelled with USLE and PESERA using QuickBird derived vegetation parameters in an alpine catchment. International Journal of Applied Earth Observation and Geoinformation, 12(3), 208–215.

    Article  Google Scholar 

  • Midmore, D. J., Jansen, H. G., & Dumsday, R. G. (1996). Soil erosion and environmental impact of vegetable production in the Cameron Highlands, Malaysia. Agriculture, Ecosystems and Environment, 60(1), 29–46.

    Article  Google Scholar 

  • Millward, A. A., & Mersey, J. E. (1999). Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. CATENA, 38(2), 109–129.

    Article  Google Scholar 

  • Mir, S. I., Sahid, I., Gasim, M. B., Rahim, S. A., & Toriman, M. E. (2010). Soil loss assessment in the Tasik Chini catchment, Pahang, Malaysia. Geological Society of Malaysia Bulletin, 56, 1–7.

    Google Scholar 

  • Mohtar, Z. A., Yahaya, A. S., & Ahmad, F. (2015). Rainfall erosivity estimation for northern and southern Peninsular Malaysia using Fournier Indexes. Procedia Engineering, 125, 179–184.

    Article  Google Scholar 

  • Mojaddadi Rizeei, H., Saharkhiz, M. A., Pradhan, B., & Ahmad, N. (2015). Soil erosion prediction based on land cover dynamics at the Semenyih Watershed in Malaysia using LTM and USLE models. Geocarto International. doi:10.1080/10106049.2015.1120354.

    Google Scholar 

  • Moore, I. D., & Burch, G. J. (1986). Physical basis of the length slope factor in the Universal Soil Loss Equation. Soil Science Society of America, 50(5), 1294–1298.

    Article  Google Scholar 

  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrogical, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30.

    Article  Google Scholar 

  • Morgan, R. P. C. (1974). Estimating regional variations in soil erosion hazard in Peninsular Malaysia. Malayan Nature Journal, 28, 94–106.

    Google Scholar 

  • Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., et al. (1998). The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23(6), 527–544.

    Article  Google Scholar 

  • Norsahida, B. S. (2008). Determination of soil erosion parameters for Malaysian conditions using remote sensing and Geographic Information System approach. Unpublished master’s thesis. Universiti Teknologi Malaysia, pp. 179.

  • Ochoa-Cueva, P., Fries, A., Montesinos, P., Rodríguez-Díaz, J. A., & Boll, J. (2015). Spatial estimation of soil erosion risk by land-cover change in the Andes of Southern Ecuador. Land Degradation and Development, 26(6), 565–573.

    Article  Google Scholar 

  • Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., et al. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54, 438–447.

    Article  Google Scholar 

  • Panagos, P., Meusburger, K., Van Liedekerke, M., Alewell, C., Hiederer, R., & Montanarella, L. (2014). Assessing soil erosion in Europe based on data collected through a European Network. Soil Science and Plant Nutrition, 60(1), 15–29.

    Article  Google Scholar 

  • Pimentel, D. (2006). Soil erosion: A food and environmental threat. Environment, Development and Sustainability, 8(1), 119–137.

    Article  Google Scholar 

  • Pimentel, D., & Burgess, M. (2013). Soil erosion threatens food production. Agriculture, 3(3), 443–463.

    Article  Google Scholar 

  • Pimentel, D., & Kounang, N. (1998). Ecology of soil erosions in ecosystems. Ecosystems, 1(5), 416–426. doi:10.1007/s100219900035.

    Article  CAS  Google Scholar 

  • Pradhan, B., Chaudhari, A., Adinarayana, J., & Buchroithner, M. F. (2012). Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: A case study at Penang Island, Malaysia. Environmental Monitoring and Assessment, 184(2), 715–727.

    Article  Google Scholar 

  • Ramli, R., & Bahri, I. S. S. (2011). Determination of soil erodiblity, K factor for Sungai Kurau soil series. ESTEEM Academic Journal, 7(1), 55–65.

    Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., Mc Cool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Agricultural Handbook, No. 703

  • Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). RUSLE: Revised universal soil loss equation. Journal of Soil and Water Conservation, 46(1), 30–33.

    Google Scholar 

  • Robichaud, P. R., Wagenbrenner, J. W., & Brown, R. E. (2010). Rill erosion in natural and disturbed forests: 1. Measurements. Water Resources Research, 46(10).

  • Rodrigo Comino, J., Iserloh, T., Morvan, X., Malam Issa, O., Naisse, C., Keesstra, S. D., Cerdà A, Prosdocimi, M., Arnáez, J., Lasanta, T., Ramos, M. C., Marqués, M. J., Ruiz Colmenero, M., Bienes, R., Ruiz Sinoga, J. D., Seeger, M., & Ries, J. B. (2016). Soil Erosion Processes in European Vineyards: A qualitative comparison of rainfall simulation measurements in Germany, Spain and France. Hydrology, 3 (1), 6. doi:10.3390/hydrology3010006

  • Russo, A. (2015). Applying the revised universal soil loss equation model to land use planning for erosion risk in Brunei Darussalam. Australian Planner, 52(2), 1–17.

    Article  Google Scholar 

  • Samad, R., & Abdul, N. (1997). Soil erosion and hydrological study of the Bakun dam catchment area, Sarawak using remote sensing and geographical information system (GIS). ACRS 1997 Proceedings.

  • Serrano-Muela, M. P., Nadal-Romero, E., Lana-Renault, N., González-Hidalgo, J. C., López-Moreno, J. I., Beguería, S., et al. (2015). An exceptional rainfall event in the central Western Pyrenees: Spatial patterns in discharge and impact. Land Degradation and Development, 26(3), 249–262.

    Article  Google Scholar 

  • Sidle, R. C., Ziegler, A. D., Negishi, J. N., Nik, A. R., Siew, R., & Turkelboom, F. (2006). Erosion processes in steep terrain—truths, myths, and uncertainties related to forest management in Southeast Asia. Forest Ecology and Management, 224(1), 199–225.

    Article  Google Scholar 

  • Singh, R., Tiwari, K. N., & Mal, B. C. (2006). Hydrological studies for small watershed in India using the ANSWERS model. Journal of Hydrology, 318(1), 184–199.

    Article  Google Scholar 

  • Straub, M. K., Mohrig, D., & Pirmez, C. (2011). Architecture of an aggradational tributary submarine-channel network on the continental slope offshore Brunei Darussalam. Application of seismic geomorphology principles to continental slope and base-of-slope systems: Case studies from seafloor and near-seafloor analogues, SEPM Special Publication No. XX.

  • Stumpf, F., Goebes, P., Schmidt, K., Schindewolf, M., Schönbrodt-Stitt, S., Wadoux, A., et al. (2016). Sediment reallocations due to erosive rainfall events in the Three Gorges Reservoir Area. Central China: Land Degradation and Development. doi:10.1002/ldr.2503.

    Google Scholar 

  • Taguas, E. V., Guzmán, E., Guzmán, G., Vanwalleghem, T., & Calero, J. A. G. (2015). Characteristics and importance of rill and gully erosion: A case study in a small catchment of a marginal olive grove. Cuadernos de investigación geográfica, 41, 107–126.

    Article  Google Scholar 

  • Teh, S. H. (2011). Soil erosion modelling using RUSLE and GIS on Cameron highlands, Malaysia for hydropower development. Unpublished Masters Thesis. University of Iceland, pp. 74

  • Terranova, O., Antronico, L., Coscarelli, R., & Iaquinta, P. (2009). Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology, 112(3), 228–245.

    Article  Google Scholar 

  • Tew, K. H. (1999). Production of Malaysian soil erodibility nomograph in relation to soil erosion issues. VT soil erosion research & consultancy, Malaysia

  • Trnka, M., Semerádová, D., Novotný, I., Dumbrovský, M., Drbal, K., ek Pavlík, F., et al. (2016). Assessing the combined hazards of drought, soil erosion and local flooding on agricultural land: A Czech case study. Climate Research, 70(2–3), 231–249.

    Article  Google Scholar 

  • Tsara, M., Kosmas, C., Kirkby, M. J., Kosma, D., & Yassoglou, N. (2005). An evaluation of the PESERA soil erosion model and its application to a case study in Zakynthos, Greece. Soil Use and Management, 21(4), 377–385.

    Article  Google Scholar 

  • Van der Knijff, J. M., Jones, R. J. A., & Montanarella, L. (2000). Soil erosion risk assessment in Europe, European Commission, European Soil Bureau.

  • Vanmaercke, M., Zenebe, A., Poesen, J., Nyssen, J., Verstraeten, G., & Deckers, J. (2010). Sediment dynamics and the role of flash floods in sediment export from medium-sized catchments: A case study from the semi-arid tropical highlands in northern Ethiopia. Journal of Soils and Sediments, 10(4), 611–627.

    Article  Google Scholar 

  • Wang, G., Yang, H., Wang, L., Xu, Z., & Xue, B. (2014). Using the SWAT model to assess impacts of land use changes on runoff generation in headwaters. Hydrological Processes, 28(3), 1032–1042.

    Article  Google Scholar 

  • Wischmeier, W., & Smith, D. (1978). Predicting rainfall erosion losses—A guide to conservation planning. U.S. Department of Agriculture Handbook, No. 537.

  • Young, R. A., Onstad, C. A., Bosch, D. D., & Anderson, W. P. (1989). AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation, 44(2), 168–173.

    Google Scholar 

  • Yu, B., Hashim, G. M., & Eusof, Z. (2001). Estimating the R-factor with limited rainfall data: A case study from peninsular Malaysia. Journal of Soil and Water Conservation, 56(2), 101–105.

    Google Scholar 

  • Yu, W. J., Jiao, J. Y., Chen, Y., Wang, D. L., Wang, N., & Zhao, H. K. (2017). Seed removal due to overland flow on abandoned slopes in the Chinese Hilly Gullied Loess Plateau Region. Land Degradation and Development, 28(1), 274–282.

    Article  Google Scholar 

  • Zhuang, Y., Du, C., Zhang, L., Du, Y., & Li, S. (2015). Research trends and hotspots in soil erosion from 1932 to 2013: A literature review. Scientometrics, 105(2), 743–758.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Sarawak Energy Berhad for funding this research under the Project “Mapping of Soil Erosion Risk.” They also thank Curtin University Sarawak for facilities and other assistance and Department of Irrigation and Drainage (DID), Malaysia, for providing rainfall data. The authors would like also to express their gratitude for the anonymous reviewers for their constructive and insightful comments, which significantly improved the content of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Vijith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijith, H., Seling, L.W. & Dodge-Wan, D. Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, Northern Borneo. Environ Dev Sustain 20, 1365–1384 (2018). https://doi.org/10.1007/s10668-017-9946-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-017-9946-4

Keywords

Navigation