Skip to main content

Advertisement

Log in

Climate Change: Use of Non-Homogeneous Poisson Processes for Climate Data in Presence of a Change-Point

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In this study, non-homogeneous Poisson processes (NHPP) are used to analyze climate data. The data were collected over a certain period time and consist of the yearly average precipitation, yearly average temperature and yearly average maximum temperature for some regions of the world. Different existing parametric forms depending on time and on unknown parameters are assumed for the intensity/rate function \(\lambda (t), t \ge 0\) of the NHPP. In the present context, the Poisson events of interest are the numbers of years that a climate variable measurement has exceeded a given threshold of interest. The threshold corresponds to the overall average measurements of each climate variable taking into account here. Two versions of the NHPP model are considered in the study, one version without including change points and one version including a change point. The parameters included in the model are estimated under a Bayesian approach using standard Markov chain Monte Carlo (MCMC) methods such as the Gibbs sampling and Metropolis–Hastings algorithms. The models are applied to climate data from Kazakhstan and Uzbekistan, in Central Asia and from the USA obtained over several years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

See Appendix 1.

Code Availability

See Appendix 2.

References

  1. Intergovernmental Panel on Climate Change. (2019). IPCC, 2018: Global Warming of 1.5\(^{\circ }\)C. An IPCC Special Report on the impacts of global warming of 1.5\(^{\circ }\)C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (Eds.).

  2. Joyce, L. A., & Birdsey, R. (2000). The impact of climate change on America’s forests: A technical document supporting the 2000 USDA Forest Service RPA Assessment. In L.A. Joyce, R. Birdsey (Eds.) Gen. Tech. Rep RMRS-GTR-59. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

  3. Doney, S. C., Ruckelshaus, M., Duffy, J. E., et al. (2012). Climate change impacts on marine ecosystems. Annual Review of Marine Sciences, 4, 11–37.

    Article  Google Scholar 

  4. Gayton, D. V. (2008). Impacts of climate change on British Columbia’s biodiversity: A literature review. Extended Abstract. BC Journal of Ecosystems and Management9, 26-30.

  5. Katz, R. W. (1996). Use of conditional stochastic models to generate climate change scenarios. Climate Change, 32, 237–255.

    Article  Google Scholar 

  6. Majda, A. J., Tomofeyev, I., & Eijnden, E. V. (2001). A mathematical framework for stochastic climate models. Communications on Pure and Applied Mathematics LIV, 891–974.

  7. Rajagopalan, B., Lall, U., & Tarboton, D. G. (1984). A non parametric renewal model for modeling daily precipitation. In K.W. Hipel, A.I. McLeod, U.S. Panu, V.P. Sing (Eds.) Stochastic and Statistical Methods in Hydrology and Environmental Engineeing, 4, 47-59.

  8. Outayek, S. E., & Nguyen, V. -T. -V. (2019) Stochastic modeling of daily rainfall process in the context of climate change. In: CSCE Annual Conference.

  9. Franzke, C. L. E., O’Kane, T. J., Bener, J., Williams, P. D., & Lucarini, V. (2015). Stochastic climate theory and modeling. WIRES Climate Change, 6, 63–78.

    Article  Google Scholar 

  10. Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres111(D5).

  11. Foley, A. (2010). Uncertainty in regional climate modelling: A review. Progress in Physical Geography, 34(5), 647–670.

    Article  Google Scholar 

  12. Powell, B. (2016). Chapter 22 - Statistical modelling of climate change. In: Climate Change. Elsevier, 341–354. 

  13. Richards, G. R. (1993). Change in global temperature: A statistical analysis. Journal of Climate, 6(3), 546–559.

    Article  Google Scholar 

  14. Achcar, J. A., Rodrigues, E. R., Paulino, C. D., & Soares, P. (2010). Non-homogeneous Poisson models with a change-point: An application to ozone peaks in Mexico City. Environmental and Ecological Statistics, 17(4), 521–541.

    Article  CAS  Google Scholar 

  15. Achcar, J. A., & Sicchieri, M. P. L. (2010). da Silva: Comparação de modelos para os excessos de internações hospitalares diárias por pneumonia na cidade de São Paulo. (In Portuguese) Revista Brasileira de Biometria, 28, 87-103.

  16. Achcar, J. A., Rodrigues, E. R., & Tzintzun, G. (2011). Using non-homogeneous Poisson models with multiple change-points to estimate the number of ozone exceedances in Mexico City. Environmetrics, 22(1), 1–12.

    Article  CAS  Google Scholar 

  17. Coelho-Barros, E. A., Achcar, J. A., Martinez, E. Z., Davarzani, N., & Grabsh, H. I. (2019). Bayesian inference for segmented Weibull distribution. Revista Colombiana de Estadística, 42, 225–243.

    Article  Google Scholar 

  18. Puziol de Oliveira, R., Chen, C., & Achcar, J. A. (2018). Bayesian estimation for change-points in counting time series: a unified approach using linear regression model and non-homogeneous Poisson processes. In: Workshop de Bioestatística, 05-07 December 2018, Maringá-PR, Brazil.

  19. Achcar, J. A. (2001). Ch. 29. Bayesian analysis for software reliability data. Handbook of Statistics20, 733–748.

  20. Achcar, J. A., Dey, D .K., & Niverthi, M. (1998). A Bayesian approach using nonhomogeneous Poisson process for software reliability models. In Frontiers in Reliability, Basu, SK, Mukhopadhyay, S. (eds.); Series on Quality, Reliability and Engeneering Statistics 4; Calcutta University; India

  21. Cid, J. E. R., & Achcar, J. A. (1999). Bayesian inference for nonhomogeneous poisson processes in software reliability models assuming nonmonotonic intensity functions. Computational Statistics & Data Analysis, 32(2), 147–159.

    Article  Google Scholar 

  22. Wilson, S. P., & Costello, M. J. (2005). Predicting future discoveries of european marine species by using a non-homogeneous renewal process. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(5), 897–918.

    Google Scholar 

  23. Guarnaccia, C., Quartieri, J., Tepedino, C., & Rodrigues, E. R. (2015). An analysis of airport noise data using a non-homogeneous Poisson model with a change-point. Applied Acoustics, 91, 33-39.

  24. Achcar, J., Martinez, E., Ruffino-Netto, A., Paulino, C., & Soares, P. (2008). A statistical model investigating the prevalence of tuberculosis in new york city using counting processes with two change-points. Epidemiology & Infection, 136(12), 1599–1605.

    Article  CAS  Google Scholar 

  25. Achcar, J. A., & Loibel, S. (1998). Constant hazard function models with a change point: A Bayesian analysis using Markov chain Monte Carlo methods. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 40(5), 543–555.

    Article  Google Scholar 

  26. Kuo, L., & Yang, T. Y. (1996). Bayesian computation for nonhomogeneous Poisson processes in software reliability. Journal of the American Statistical Association, 91(434), 763–773.

    Article  Google Scholar 

  27. Pievatolo, A., & Ruggeri, F. (2004). Bayesian reliability analysis of complex repairable systems. Applied Stochastic Models in Business and Industry, 20(3), 253–264.

    Article  Google Scholar 

  28. Achcar, J. A., & Bolfarine, H. (1989). Constant hazard against a change-point alternative: A Bayesian approach with censored data. Communications in Statistics-Theory and Methods, 18(10), 3801–3819.

    Article  Google Scholar 

  29. Carlin, B. P., Gelfand, A. E., & Smith, A. F. (1992). Hierarchical Bayesian analysis of changepoint problems. Journal of the Royal Statistical Society: Series C (Applied Statistics), 41(2), 389–405.

    Google Scholar 

  30. Dey, D. K., & Purkayastha, S. (1997). Bayesian approach to change point problems. Communications in Statistics-Theory and Methods, 26(8), 2035–2047.

    Article  Google Scholar 

  31. Raftery, A. E., & Akman, V. (1986). Bayesian analysis of a Poisson process with a change-point. Biometrika, 85–89.

  32. Ruggeri, F., & Sivaganesan, S. (2005). On modeling change points in non-homogeneous Poisson processes. Statistical Inference for Stochastic Processes, 8(3), 311–329.

    Article  Google Scholar 

  33. Gyarmati-Szabó, J., Bogachev, L. V., & Chen, H. (2011). Modelling threshold violations of air pollution concentrations using multiple change-points Poisson process. Atmospheric Environment, 45, 5493–5503.

    Article  Google Scholar 

  34. Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. The American Statistician, 49(4), 327–335.

    Google Scholar 

  35. Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398–409.

    Article  Google Scholar 

  36. Smith, A. F., & Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Methodological), 55(1), 3–23.

    Google Scholar 

  37. Spiegelhalter, D. J., Thomas, A., Best, N., & Lunn, D. (2003). WinBUGS version 1.4 user manual. MRC Biostatistics Unit, Cambridge. URL: http://www.mrc-bsu.cam.ac.uk/bugs.

  38. Oliveira, R. P., Achcar, J. A., Mazucheli, J., & Bertoli, W. (2021). A new class of bivariate Lindley distributions based on stress and shock models and some of their reliability properties. Reliability Engineering & System Safety, 211, 107528.

    Article  Google Scholar 

  39. Yang, T. Y. (1994). Computational approaches to bayesian inference for software reliability. PhD Thesis, Department of Statistics, University of Connecticut, Storrs, USA.

  40. Crow, L. H. (1974). Reliability analysis for complex repairable systems. In: Proschan, F., Serfling, R. J. (Eds.). Reliability and Biometry, 379–410.

  41. Crow, L. H. (1982). Confidence interval procedures for the Weibull process with applications to reliability growth. Technometrics, 24(1), 67–72.

    Article  Google Scholar 

  42. Musa, J. D., & Okumoto, K. (1984). A logarithmic Poisson execution time model for software reliability measurement. In: Proceedings of the 7th international Conference on Software Engineering. Citeseer, 230–238.

  43. Goel, A., & Okumoto, K. (1978). An analysis of recurrent software failures in real-time control system. In: Proceedings of ACM Conference. Washington, 496–500.

  44. Cancho, V., Bolfarine, H., & Achcar, J. (1999). A Bayesian analysis for the exponentiated-Weibull distribution. Journal Applied Statistical Science, 8(4), 227–42.

    Google Scholar 

  45. Mudholkar, G. S., Srivastava, D. K., & Freimer, M. (1995). The exponentiated Weibull family: A reanalysis of the bus-motor-failure data. Technometrics, 37(4), 436–445.

    Article  Google Scholar 

  46. Weibull, W., et al. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics, 18(3), 293–297.

    Article  Google Scholar 

  47. Kotz, S., Balakrishnan, N., & Johnson, N. L. (2004). Pareto distributions. Continuous multivariate distributions, Volume 1: Models and applications. John Wiley & Sons.

  48. Lomax, K. S. (1954). Business failures: Another example of the analysis of failure data. Journal of the American Statistical Association, 49(268), 847–852.

    Article  Google Scholar 

  49. Cox, D. R., & Lewis, P. A. (1996). Statistical analysis of series of events. U.K.: Methuem.

    Google Scholar 

  50. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583–639.

    Article  Google Scholar 

  51. Williams, M., & Konovalov, V. (2008). Central Asia temperature and precipitation data, 1879–2003. Boulder, Colorado: USA National Snow and Ice Data Center. https://doi.org/10.7265/N5NK3BZ8. [Accessed in 10/20/2020].

  52. Carlin, B. P., & Louis, T. A. (2000). Bayes and empirical Bayes methods for data analysis. Chapman & Hall/CRC.

  53. Laub, P. J., Taimre, T., & Pollett, P. K. (2015). Hawkes processes. In arXiv:1507.02822v1.

Download references

Acknowledgements

The authors are grateful to an anonymous reviewer for the comments and suggestions which helped to improve the presentation of the results and also for suggesting the work about Hawkes processes. The authors are also grateful to Dr Eliane R. Rodrigues for a review of the manuscript and important comments that led to the great improvement of the article.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Jorge Alberto Achcar and Ricardo Puziol de Oliveira contributed to revision, writing, analysis and methodology.

Corresponding author

Correspondence to Ricardo Puziol de Oliveira.

Ethics declarations

Conflicts of Interest/Competing Interests

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Table 5 A1. Average yearly precipitation in Kazakhstan (Almaty) from the year 1879 to 2002
Table 6 A2. Average yearly maximum temperature in Kazakhstan (Almaty) from the year 1915 to 2003
Table 7 A3. Average yearly maximum temperature in Uzbekistan (Tashkent) from the year 1894 to 2003
Table 8 A4. Average yearly temperature in USA from the year 1895 to 2019

Appendix 2

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achcar, J.A., de Oliveira, R.P. Climate Change: Use of Non-Homogeneous Poisson Processes for Climate Data in Presence of a Change-Point. Environ Model Assess 27, 385–398 (2022). https://doi.org/10.1007/s10666-021-09797-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-021-09797-z

Keywords

Navigation