Skip to main content
Log in

Modeling the dispersion of drilling muds using the bblt model: the effects of settling velocity

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The benthic boundary layer transport (bblt) model was widely used in the Atlantic Canadian offshore region to assess the potential impact zones from drilling wastes discharges from offshore oil and gas drilling. The current version of the bblt uses a single-class settling velocity scenario, which may affect its performance, as settling velocity is size, shape, and material dependent. In this study, the effects of settling velocity on bblt predictions were assessed by replacing this single-class settling velocity scenario with a multi-class size-dependent settling velocity scenario. The new scenario was used in a hypothetical study to simulate the dispersion of barite and fine-grained drilling cuttings. The study showed that the effects of settling velocity on bblt predictions are spatial, temporal, and material dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Applied Science Associates (ASA).(2006). Retrieved from http://www.appsci.com/mudmap/index.htm.

  2. Brandsma, M. G., & Saucer, R. C.(1983). The OOC model: Prediction of short term fate of drilling fluids in the ocean. Proceedings of Mineral Management Service Workshop on Discharged Modeling, Santa Barbara, CA, USA, February 7–10, 1983.

  3. Carles, L. J. (1996). Simulating the dispersion of offshore drill-cuttings. M.Sc Thesis, Heriot-Watt University, UK.

  4. Carles, L. J. (2000). Physical characteristics and aquatic settlement properties of offshore drill-cuttings. PhD Thesis, Robert Gordon University, Aberdeen, Scotland, UK.

  5. Carles, L. J., & Bryden, I. G. (1999). The sensitivity of a dispersion model to cuttings settling speeds. Society of Underwater technology Journal, 24, 19–24.

    Article  Google Scholar 

  6. Chien, S.-F. (1992). Settling velocity of irregular shaped particles. SPE paper No. 26121.

  7. Chien, S.-F. (1994). Settling velocity of irregularly shaped particles. SPE Paper 26121. In Proceedings of 1994 SPE Annual Technical Conference and Exhibition—Drilling and General Petroleum Engineering, September 25–28, 1994, New Orleans, Louisiana.

  8. Cranford, P. J., Gordon Jr, D. C., Lee, K., Armsworthy, S. L., & Tremblay, G. H. (1999). Chronic toxicity and physical disturbance effects of water and oil-based drilling fluids and some major constituents on adult sea scallops (placopecten magellanicus). Marine Environmental Research, 48, 225–256. doi:10.1016/S0141-1136(99)00043-4.

    Article  CAS  Google Scholar 

  9. Cranford, P. J., Gordon Jr, D. C., Hannah, C. G., Loder, J. W., Milligan, T. G., Muschenheim, D. K., et al. (2003). Modelling potential effects of petroleum exploration drilling on northern Georges bank scallop stocks. Ecological Modelling, 166, 19–39. doi:10.1016/S0304-3800(03)00100-5.

    Article  Google Scholar 

  10. Csanady, G. T. (1973). Turbulent diffusion in the environment. Boston, MA: Reidel.

  11. Curran, K., Hill, J. P. S., & Milligan, T. G. (2002). The role of particle aggregation in size-dependent deposition of drill mud. Continental Shelf Research, 22, 405–416. doi:10.1016/S0278-4343(01)00082-6.

    Article  Google Scholar 

  12. Drozdowski, A., Hannah, C., & Tedford, T. (2004). bblt Version 7 user’s manual. Canadian Technical Report of Hydrography and Ocean Science, 69 pp.

  13. Gerard, A. L. D. (1996). Laboratory investigations on the fate and physicochemical properties of drilling cuttings after discharged into the sea. Physical and biological effects of processed oily drill cuttings. E&P Forum Report. Paper, 3, 16–24.

  14. Gordon Jr, D. C., Cranford, P. J., Hannah, C. G., Loder, J. W., Milligan, T. G., Muschemheim, D. K., et al. (2000). Modelling the transport and effects on scallops of water-based drilling mud from potential hydrocarbon exploration on Georges Bank. Canadian Technical Report of Fisheries and Aquatic Sciences, 2317, 115.

    Google Scholar 

  15. Hannah, C. G., Drozdowski, A. (2005). Characterizing the near-bottom dispersion of drilling mud on three Canadian offshore banks. Marine Pollution Bulletin, 50, 1433–1456. doi:10.1016/j.marpolbul.2005.09.002.

    Article  CAS  Google Scholar 

  16. Hannah, C. G., Drozdowski, A., Muschenheim, D. K., Loder, J. W., Belford, S., & MacNeil, M. (2003). Evaluation of drilling mud dispersion models at SOEI Tier I Sites: Part 1 North Triumph, Fall 1999. Canadian Technical Report Hydrography and Ocean Science, 232:v+51 p. Available online at www.dfo-mpo.gc.ca/Library/275999.pdf.

  17. Huang, H. (1992). Transport properties of drilling muds and Detroit River sediments. PhD Thesis. University of Santa Barbara, CA, USA, May 1992.

  18. Khondaker, A. N. (2000). Modeling the fate of drilling waste in marine environment – an overview. Computers & Geosciences, 26, 531–540. doi:10.1016/S0098-3004(99)00135-1.

    Article  Google Scholar 

  19. Li, M. Z., & Amos, C. L. (2001). SEDTRAN96: the upgraded and better calibrated sediment-transport model for continental shelves. Computers & Geosciences, 27, 619–645. doi:10.1016/S0098-3004(00)00120-5.

    Article  Google Scholar 

  20. Milligan, T. G., & Hill, P. S. (1998). A laboratory assessment of the relative importance of turbulence, particle composition, and concentration in limiting maximal floc size and settling behaviour. Journal of Sea Research, 39, 227–241. doi:10.1016/S1385-1101(97)00062-2.

    Article  Google Scholar 

  21. Niu, H., Husain, T., Veitch, B., & Bose, N.(2003). Transport properties of offshore discharged synthetic based drilling cuttings. Proceedings of MTS/IEEE Oceans 2003 Conference, Sept. 22–26, 2003, San Diego, CA, USA, vol 1., pp 411–416.

  22. Rye, H., Reed, M., Frost, T. K., & Utvik, T. I. R. (2006). Comparison of the ParTrack mud/cuttings release model with field data based on use of synthetic-based drilling fluids. Environmental Modelling & Software, 21, 190–203. doi:10.1016/j.envsoft.2004.04.018.

    Article  Google Scholar 

  23. Sabeur, Z. A., & Tyler, A. O. (2001). Validation of the PROTEUS model for the physical dispersion, geochemistry and biological impacts of produced waters.” In Proceedings of the 5th International Marine Environmental Modeling Seminar, Oct. 9–11, 2001, New Orleans, LA, USA, pp 209–228.

  24. Tedford, T., Drozdowski, A., & Hannah, C. G. (2003). Suspended sediment drift and dispersion at Hibernia. Canadian Technical Report of Hydrography and Ocean Sciences, 227, 57.

    Google Scholar 

  25. Tedford, T., Hannah, C. G., Milligan, T. G., Loder, J. W., & Muschenheim, D. (2002). Flocculation and the fate of drill mud discharges. In: M. L. Spaulding (Ed.), Estuarine and coastal modelling: Proceedings of the 7th International Conference. ASCE, pp. 294–309.

  26. Thomson, D. H., Davis, R. A., Belore, R., Gonzalez, E., Christian, J., Moulton, V. D., et al. (2000). Environmental assessment of exploration drilling on Nova Scotia. Report prepared for Canada–Nova Scotia Offshore Petroleum Board and Mobil Oil Canada Properties, Shell Canada Ltd., Imperial Oil Resources Ltd., Gulf Canada Resources Ltd., Chevron Canada Resources, EnCana Petroleum Ltd., Murphy Oil Company Ltd., and Norsk Hydro Canada Oil & Gas Inc. Report Prepared by LGL Ltd. Environmental Research Associates. LGL Report, TA, 2281, 25.

Download references

Acknowledgments

The Natural Sciences and Engineering Research Council (NSERC) of Canada and the Petroleum Research Atlantic Canada (PRAC) provided financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Niu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, H., Drozdowski, A., Husain, T. et al. Modeling the dispersion of drilling muds using the bblt model: the effects of settling velocity. Environ Model Assess 14, 585–594 (2009). https://doi.org/10.1007/s10666-008-9162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-008-9162-6

Keywords

Navigation