Skip to main content
Log in

Analytical and numerical stress field solutions in the Brazilian Test subjected to radial load distributions and their stress effects at the centre of the disk

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A new method is developed in order to determine the stress state inside a disk subjected to arbitrary radial compressive distributions along its boundary, obtaining both numerical and closed-form solutions, which is analytically verified through accepted formulations; additionally, alternative expressions for uniform, sinusoidal and parabolic distributions are proposed. Based on the hypothesis of a smooth stress transition along the loaded and unloaded part of the rim, two new distributions (spline and new cosine) are proposed and analysed. Even if closed-form solutions were not feasible, the latter may be accurately solved numerically since the error committed is that of the numerical technique used. Main differences are observed in radial and shear components, whereas hoop ones are relevant on the vicinity of the load application area and the vertical axis. Special attention is paid to the centre of the sample, of which stress state depends on the distribution shape and the contact angle. Finally, it is concluded that there is always a deviation from the values predicted due to the concentrated load as a consequence of the deformation induced by the jaw, which is especially significant in the uniform stress distribution and also influences the determination of the tensile strength in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Carneiro FLLB (1943) A new method to determine the tensile strength of concrete. In: Proceedings of the 5th meeting of the Brazilian Association for Technical Rules (“Associacao Brasileira de Normas Tecnicas—ABNT”), 1943, 3rd. section pp 126–129 (in Portuguese)

  2. Akazawa T (1943) Méthode pour léssai de traction de bétons. J Jpn Civ Eng Inst 16:13–23

    Google Scholar 

  3. ASTM C496, C496M–11 (2004) Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM International, West Conshohocken

    Google Scholar 

  4. ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci 15:99–103

    Article  Google Scholar 

  5. Boussinesq MJ (1885) Application des potentiels a l’étude de l’équilibre et du mouvement des solides élastiques. Gauthier-Villars, Paris

    MATH  Google Scholar 

  6. Flamant M (1892) Sur la répartition des pressions dans un solide rectangulaire chargé transversalement. Comptes Rendus de l’Académie des Sciences 114:1465–1468

    MATH  Google Scholar 

  7. Boussinesq MJ (1892) Des perturbations locales que produit au-dessous d’elle une fortecharge, répartie uniformément le long d’ une droite normale aux deux bords, à la surface supérieure d’ une poutre rectangulaire et de longueur indéfinie posée de champ, soit sur un sol horizontal, soit sur deux appuis transversaux équidistants de la charge. Comptes Rendus de l’Académie des Sciences 114:1510–1516

    MATH  Google Scholar 

  8. Timoshenko S, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New York

    MATH  Google Scholar 

  9. Hondros G (1959) The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. Aust J Appl Sci 10(3):243–268

    Google Scholar 

  10. Hung KM, Ma CC (2003) Theoretical analysis and digital photoelastic measurement of circular disks subjected to partially distributed compressions. Exp Mech 43:216–224

    Google Scholar 

  11. Ma CC, Hung KM (2008) Exact full-field analysis of strain and displacement for circular disks subjected to partially distributed compressions. Int J Mech Sci 50(2):275–292

    Article  MATH  Google Scholar 

  12. Markides ChF, Pazis DN, Kourkoulis SK (2010) Closed full-field solutions for stresses and displacements in the Brazilian disk under distributed radial load. Int J Rock Mech Min Sci 47(2):227–237

    Article  Google Scholar 

  13. Muskhelishvili NI (1977) Some basic problems of the mathematical theory of elasticity. P. Noordhoff, Leyden

    Book  Google Scholar 

  14. Sokolnikoff IS (1956) Mathematical theory of elasticity. McGraw-Hill Book Company INC, New York

    MATH  Google Scholar 

  15. Kolosov GV (1935) Application of the complex variable to the theory of elasticity. ONT1, Moscow [in Russian]

    Google Scholar 

  16. Markides ChF, Pazis DN, Kourkoulis SK (2012) The Brazilian disc under non-uniform distribution of radial pressure and friction. Int J Rock Mech Min Sci 50:47–55

    Article  Google Scholar 

  17. Markides ChF, Kourkoulis SK (2012) The stress field in a standardized Brazilian disc: the influence of the loading type acting on the actual contact length. Rock Mech Rock Eng 45(2):145–158

    Article  Google Scholar 

  18. Kourkoulis SK, Markides ChF, Chatzistergos PE (2012) The Brazilian disc under parabolically varying load: theoretical and experimental study of the displacement field. Int J Solids Struct 49(7–8):959–972

    Article  Google Scholar 

  19. Kourkoulis SK, Markides ChF, Chatzistergos PE (2013) The standardized Brazilian disc test as a contact problem. Int J Rock Mech Min Sci 57:132–141

    Article  Google Scholar 

  20. Markides ChF, Kourkoulis SK (2013) Naturally accepted boundary conditions for the Brazilian disc test and the corresponding stress field. Rock Mech Rock Eng 46(5):959–980

    Article  Google Scholar 

  21. Markides ChF, Kourkoulis SK (2016) The influence of jaw’s curvature on the results of the Brazilian disc test. J Rock Mech Geotechn Eng 8(2):127–146

    Article  Google Scholar 

  22. Garcia-Fernandez CC, Gonzalez-Nicieza C, Alvarez-Fernandez MI, Gutierrez-Moizant RA (2018) Analytical and experimental study of failure onset during a Brazilian test. Int J Rock Mech Min Sci 103:254–265

    Article  Google Scholar 

  23. Yuan R, Shen B (2017) Numerical modelling of the contact condition of a Brazilian disk test and its influence on the tensile strength of rock. Int J Rock Mech Min Sci 93:54–65

    Article  Google Scholar 

  24. Allena R, Cluzel C (2014) Identification of anisotropic tensile strength of cortical bone using Brazilian test. J Mech Behav Biomed Mater 38:134–142

    Article  Google Scholar 

  25. Carrera CA, Chen YC, Li Y, Rudney J, Aparicio C, Fok A (2016) Dentin-composite bond strength measurement using the Brazilian disk test. J Dent 52:37–44

    Article  Google Scholar 

  26. Arifvianto B, Leeflang MA, Zhou J (2017) Diametral compression behavior of biomedical titanium scaffolds with open, interconnected pores prepared with the space holder method. J Mech Behav Biomed Mater 68(January):144–154

    Article  Google Scholar 

  27. Bimis A, Canal LP, Karalekas D, Botsis J (2017) On the mechanical characteristics of a self-setting calcium phosphate cement. J Mech Behav Biomed Mater 68(February):296–302

    Article  Google Scholar 

  28. Belrhiti Y, Dupre JC, Pop O, Germaneau A, Doumalin P, Huger M, Chotard T (2017) Combination of Brazilian test and digital image correlation for mechanical characterization of refractory materials. J Eur Ceram Soc 37(5):2285–2293

    Article  Google Scholar 

  29. Hernández MF, Suárez G, Cipollone M, Aglietti EF, Rendtorff NM (2017) Mechanical behavior and microstructure of porous needle: aluminum borate (Al18B4O33) and Al2O3–Al18B4O33 composites. Ceram Int 43(15):11759–11765

    Article  Google Scholar 

  30. Reddy S, Mukunda PG, Aithal K, Shetty PB (2017) Strength evaluation of flake and spheroidal graphite cast irons using diametral compression test. J Mat Res Technol 6(1):96–100

    Article  Google Scholar 

  31. Jianhong Y, Wu FQ, Sun JZ (2009) Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads. Int J Rock Mech Min Sci 46(3):568–576

    Article  Google Scholar 

  32. Japaridze L (2015) Stress-deformed state of cylindrical specimens during indirect tensile strength testing. J Rock Mech Geotech Eng 7(5):509–518

    Article  Google Scholar 

  33. Han Y, Lai B, Liu HH, Li H (2018) Measurement of elastic properties in Brazilian disc test: solution derivation and numerical verification. Geomech Geophys Geo-Energy Geo-Resour 4(1):63–77

    Article  Google Scholar 

  34. Sgambitterra E, Lamuta C, Candamano S, Pagnotta L (2018) Brazilian disk test and digital image correlation: a methodology for the mechanical characterization of brittle materials. Mater Struct 51:19

    Article  Google Scholar 

  35. Yu J, Shang X, Wu P (2018) Influence of pressure distribution and friction on determining mechanical properties in the Brazilian test: theory and experiment. Int J Solids Struct 161:11–22

    Article  Google Scholar 

  36. Garcia-Fernandez CC, Gonzalez-Nicieza C, Alvarez-Fernandez MI, Gutierrez-Moizant RA (2018) New methodology for estimating the shear strength of layering in slate by using the Brazilian test. Bull Eng Geol Environ 78(4):2283–2297

    Article  Google Scholar 

  37. Kourkoulis SK, Markides ChF, Hemsley JA (2013) Frictional stresses at the disc-jaw interface during the standardized execution of the Brazilian disc test. Acta Mech 224(2):255–268

    Article  MATH  Google Scholar 

  38. Lavrov A, Vervoort A (2002) Theoretical treatment of tangential loading effects on the Brazilian test stress distribution. Int J Rock Mech Min Sci 39(2):275–283

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from PhD fellowship Severo Ochoa Program of the Government of the Principality of Asturias (PA-14-PF-BP14-067) and from the PhD fellowship of the University of Oviedo (modality B) of 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Inmaculada Álvarez-Fernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Miguel, D.J., Álvarez-Fernández, M.I., García-Fernández, C.C. et al. Analytical and numerical stress field solutions in the Brazilian Test subjected to radial load distributions and their stress effects at the centre of the disk. J Eng Math 116, 29–48 (2019). https://doi.org/10.1007/s10665-019-10001-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-019-10001-1

Keywords

Navigation