Skip to main content
Log in

Phenomenological isotropic visco-hyperelasticity: a differential model based on fractional derivatives

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The rheological equation of a standard linear solid, i.e., the Zener model, is thermodynamically consistent. Thus, it was often used as a starting point for the development of nonlinear viscoelastic models, especially for elastomers. The basic idea of this paper is a generalization of the one-dimensional fractional constitutive equation of the Zener model to large strains. To reduce the number of material parameters of differential models based on the concept of the internal variables and to avoid integral constitutive equations, we develop a differential model based on the concept of dual stress and strain tensors and their derivatives. To this end, we select two couples of dual stress and strain tensors that have been used in finite elasticity. Then we obtain two constitutive models of incompressible isotropic materials called M1 and M2. We show that the M1 model is not suitable for describing the viscoelastic behavior of elastomers. To improve the predictions of the M2 model, we assume that the material is thixotropic. Therefore, the ratio of the relaxation and creep time depends on deformation. Experimental results show that this ratio may be represented as a function of the first invariant of the Cauchy–Green strain tensor. This yields a new constitutive equation whose material parameters were identified using experimental data on relaxation loadings in the literature. Next, we show that the model is able to predict the experimental data for combined loads of tension–torsion. Consequently, the model seems to be efficient at predicting the multiaxial visco-hyperelastic behavior of elastomers. The main advantage of the current model is that it has a differential form with relatively few parameters and is mathematically convenient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Locket F-J (1972) Nonlinear viscoelastic solids. Academic Press, London, pp 59–188

    Google Scholar 

  2. Drapaca C-S, Sivaloganathan S, Tenti G (2007) Nonlinear constitutive laws in viscoelasticity. Math Mech Solids 12:475–501

    Article  MathSciNet  MATH  Google Scholar 

  3. Wineman A (2009) Nonlinear viscoelastic solids. Math Mech Solids 14:300–366

    Article  MathSciNet  MATH  Google Scholar 

  4. Coleman B-D, Noll W (1961) Foundations of linear viscoelasticity. Rev Mod Phys 33:239–249

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Holzapfel G-A, Simo J-C (1996) A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int J Solids Struct 33:3019–3034

    Article  MATH  Google Scholar 

  6. Lianis G (1963) Constitutive equations of viscoelastic solids under finite deformation. AA ES Report 63-110. Purdue University

  7. Goldberg W, Lianis G (1968) Behavior of viscoelastic media under small sinusoidal oscillations superposed on finite strain. J Appl Mech ASME 35(3):433–440

    Article  Google Scholar 

  8. Sullivan J-L, Morman K-N, Pett R-A (1980) A non-linear viscoelastic characterization of a natural rubber gum vulcanizate. Rubber Chem Technol 53:805–822

    Article  Google Scholar 

  9. Morman K-N (1988) An adaptation of finite viscoelasticity theory for rubber-like viscoelasticity by use of a generalized strain measure. Rheol Acta 27:3–14

    Article  MATH  Google Scholar 

  10. Fosdick R-L, Yu J-H (1998) Thermodynamics, stability and non-linear oscillations of a viscoelastic solids—2. History type solids. Int J Non-Linear Mech 33(1):165–188

    Article  MathSciNet  MATH  Google Scholar 

  11. Pipkin A-C, Rogers T-G (1968) A non-linear integral representation for viscoelastic behaviour. J Mech Phys Solids 16(1):59–72

    Article  ADS  MATH  Google Scholar 

  12. Bernstein B, Kearlsey E-A, Zapas L-J (1963) A study of stress relaxation with finite-strain. Trans Soc Rheol 7:391–410

    Article  MATH  Google Scholar 

  13. Petiteau J-C, Verrou E, Othman R, Le sourne H, Sigrist J-F, Barras G (2013) Large strain rate-dependent response of elastomers at different strain-rate: convolution integral vs. internal variable formulations. Mech Time-Depend Mater 17:349–367

    Article  ADS  Google Scholar 

  14. Jaishankar A-J, McKinley G-H (2014) A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J Rheol 58(6):1751–1788

    Article  ADS  Google Scholar 

  15. Chang W-V, Bloch R, Tschoegl N-W (1976) On the theory of the viscoelastic behavior of soft polymers in moderately large deformations. Rheol Acta 15:367–378

    Article  MATH  Google Scholar 

  16. Sullivan J-L (1987) A non-linear viscoelastic model for representing nonfactorizable time-dependent behavior in cured rubber. J Rheol 31(3):271–295

    Article  ADS  Google Scholar 

  17. Fatt M-S Hoo, Ouyang X (2007) Integral-based constitutive equation for rubber at high strain rates. Int J Solids Struct 44:6491–6506

    Article  MATH  Google Scholar 

  18. Ciambella J, Paolone A, Vidoli S (2010) A comparison of nonlinear integral-based viscoelastic models through compression tests on filled rubber. Mech Mater 42:932–944

    Article  Google Scholar 

  19. Christensen J-M (1980) A nonlinear theory of viscoelasticity for application to elastomers. J Appl Mech ASME 37:53–60

    MATH  Google Scholar 

  20. O’Dowd N-P, Knauss W-G (1995) Time dependent large principal deformation of polymers. J Mech Phys Solids 43:771–792

    Article  ADS  MATH  Google Scholar 

  21. Rajagopal K-R, Srinivasa A-R (2013) An implicit thermomechanical theory based on a Gibbs potential formulation for describing the response of thermoviscoelastic solids. Int J Eng Sci 70:15–28

    Article  Google Scholar 

  22. Haj-Ali R-M, Muliana A-H (2004) Numerical finite element formulation of the Schapery non linear viscoelastic material model. Int J Numer Methods Eng 59(1):25–45

    Article  MATH  Google Scholar 

  23. Tschoegl N-W (1989) The phenomenological theory of linear viscoelastic behaviour. Springer, Heildelberg

    Book  MATH  Google Scholar 

  24. Schiessel H, Blumen A (1993) Hierarchical analogues to fractional relaxation equations. J Phys Math Gen 26:5057–5069

    Article  ADS  Google Scholar 

  25. Sidoroff F (1975) Variables internes en viscolasticit II. Milieux avec configuration intermdiaire. J Méc 14(4):571–595

    MathSciNet  MATH  Google Scholar 

  26. Huber N, Tsakmakis C (2000) Finite deformation viscoelasticity laws. Mech Mater 32:1–18

    Article  MATH  Google Scholar 

  27. Ward I-M, Sweeney J (2004) An introduction to the mechanical properties of solid polymers. Wiley, New York

    Google Scholar 

  28. Diani J, Brieu M, Gilormini P (2006) Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material. Int J Solids Struct 43:3044–3056

    Article  MATH  Google Scholar 

  29. Lion A (2001) Thermomechanically consistent formulations of the standard linear solid using fractional derivatives. Arch Mech 53(3):253–273

    MATH  Google Scholar 

  30. Bagley R-L, Torvik P-J (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30(1):133–155

    Article  ADS  MATH  Google Scholar 

  31. Haupt P, Lion A, Backhauss E (2000) On the dynamic behaviour of polymers under finite strains: constitutive modelling and identification of parameters. Int J Solids Struct 37:3633–3646

    Article  MATH  Google Scholar 

  32. Pritz T (2003) Five-parameter fractional derivative model for polymeric damping materials. J Sound Vib 265:935–952

    Article  ADS  Google Scholar 

  33. Bechir H, Idjeri M (2011) Computation of the relaxation and creep functions of elastomers from harmonic shear modulus. Mech Time-Depend Mater 15:119–138

    Article  ADS  Google Scholar 

  34. Haupt P, Lion A (2002) On finite linear viscoelasticity of incompressible isotropic materials. Acta Mech 159:87–124

    Article  MATH  Google Scholar 

  35. Drozdov A-D (1997) Fractional differential models in finite viscoelasticity. Acta Mech 124:155–180

    Article  MathSciNet  MATH  Google Scholar 

  36. Adolfsson K, Enelund M (2003) Fractional derivative viscoelasticity at large deformations. Non-Linear Dyn 33:301–321

    Article  MathSciNet  MATH  Google Scholar 

  37. Johnson A-R, Quigley C-J (1992) A viscohyperelastic Maxwell model for rubber viscoelasticity. Rubber Chem Technol 65:137–153

    Article  Google Scholar 

  38. Kim J-K, Kim K-S, Cho J-Y (1997) Viscoelastic model of finitely deforming rubber and its finite element analysis. J Appl Mech ASME 64:835–841

    Article  MATH  Google Scholar 

  39. Lubliner J (1985) A model for rubber viscoelasticity. Mech Res Commun 12:93–99

    Article  Google Scholar 

  40. Le Tallec P, Rahier C, Kaiss A (1993) A three-dimensional incompressible viscoelasticity in large strains: formulation and numerical approximation. Comput Methods Appl Mech Eng 109:233–258

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Kaliske M, Rothert H (1997) Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput Mech 19:228–239

    Article  MATH  Google Scholar 

  42. Miehe C, Keck J (2000) Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers: Experiments, modeling and algorithmic implementation. J Mech Phys Solids 48:323–365

    Article  ADS  MATH  Google Scholar 

  43. Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455–3482

    Article  MATH  Google Scholar 

  44. Laiarinandrasana L, Piques R, Robisson A (2003) Visco-hyperelastic model with internal state variable coupled with discontinuous damage concept under total Lagrangian formulation. Int J Plasticity 19:977–1000

    Article  MATH  Google Scholar 

  45. Vidoli S, Sciarra G (2002) A model for crystal plasticity based on micro-slip descriptors. Contin Mech Thermodyn 14:425–435

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Haupt P, Sedlan K (2001) Viscoplasticity of elastomeric materials. Experimental facts and constitutive modeling. Arch Appl Mech 71:89–109

    Article  MATH  Google Scholar 

  47. Rendek M, Lion A (2010) Amplitude dependence of filler-reinforced rubber: experiments, constitutive modelling and FEM—implementation. Int J Solids Struct 47:2918–2936

    Article  MATH  Google Scholar 

  48. Green M-S, Tobolsky A-V (1946) A new approach of the theory of relaxing polymeric media. J Chem Phys 14(2):80–92

    Article  ADS  Google Scholar 

  49. Bergström J-S, Boyce M-C (1998) Constitutive modelling of the large strain-time dependent behavior of elastomers. J Mech Phys Solids 46:931–954

    Article  ADS  MATH  Google Scholar 

  50. Reese S (2003) A micromechanically motivated material for the thermo-viscoelastic material behavior of rubber-like polymers. Int J Plasticity 19:909–940

    Article  MATH  Google Scholar 

  51. Drozdov A-D, Dorfmann A (2003) A micro-mechanical model for the response of filled elastomers at finite strains. Int J Plasticity 19(7):1037–1067

    Article  MathSciNet  MATH  Google Scholar 

  52. Makradi A, Gregory R-V, Ahzi S, Edie D-D (2005) A two phase self-consistent model for the deformation and phase transformation behavior of polymers above the glass transition temperature: application to PET. Int J Plasticity 21:741–758

    Article  MATH  Google Scholar 

  53. Argon A-S, Bulatov V-V, Mott P-H, Suter U-W (1995) Plastic deformation in glassy polymers by atomistic and mesoscopic simulations. J Rheol 39:377–399

    Article  ADS  Google Scholar 

  54. Caputo M, Mainardi F (1971) Linear models of dissipation in anelastic solids. Riv Nuovo Cimento 1:161–198

    Article  Google Scholar 

  55. Bagley R-L, Torvik P-J (1983) Fractional calculus a different approach to the analysis of viscoelastically damped structures. AIAA J 21:741–748

    Article  ADS  MATH  Google Scholar 

  56. Welch S, Rorrer R, Duren R (1999) Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mech Time-Depend Mater 3(3):279–303

    Article  ADS  Google Scholar 

  57. Koeller R-C (1984) Applications of fractional calculus to the theory of viscoelasticity. J Appl Mech ASME 51:299–307

    Article  MathSciNet  MATH  Google Scholar 

  58. Padovan J (1987) Computational algoritms for FE formulations involving fractional operators. Comput Mech 2:271–287

    Article  MATH  Google Scholar 

  59. Enelund M, Mähler L, Runesson B, Josefson B-M (1999) Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws. Int J Solids Struct 36:2417–2442

    Article  MATH  Google Scholar 

  60. Schmidt A, Gaul L (2002) Finite element formulation of viscoelastic constitutive equations using fractional time derivatives. Non-Linear Dyn 29:37–55

    Article  MATH  Google Scholar 

  61. Yuan L, Agrawal O-P (2002) A numerical scheme for dynamic systems containing fractional derivatives. J Vib Acoust 124:321–324

    Article  Google Scholar 

  62. Schmidt A, Gaul L (2006) On a critique of a numerical scheme for the calculation of fractionally damped dynamical systems. Mech Res Commun 33:99–107

    Article  MATH  Google Scholar 

  63. Holzapfel G-A (2000) Nonlinear solids mechanics: a continuum approach for engineering. Wiley, Chichester, pp 212–290

  64. Haupt P, Tsakmakis C (1989) On the application of dual variables in continuum mechanics. Contin Mech Thermodyn 1:165–196

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Batra R-C (2001) Comparison of results from four linear constitutive relations in isotropic elasticity. Int J Non-Linear Mech 36:421–432

    Article  MATH  Google Scholar 

  66. Ogden R-W (1997) Nonlinear elastic deformations. Dover Publications, New York

    MATH  Google Scholar 

  67. Hassani S, Alaoui Soulimani A, Ehrlacher A (1998) A nonlinear viscoelastic model: the pseudo-linear model. Eur J Mech A 17(4):567–598

    Article  MathSciNet  MATH  Google Scholar 

  68. Haupt P (2002) Continuum mechanics and theory of materials, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  69. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego, pp 103–109, 223–242

  70. Carpinteri A, Mainardi F (1997) Fractals and fractional calculus in continuum mechanics. Springer, Vienna

    Book  MATH  Google Scholar 

  71. Hartmann S, Tschöpe T, Schreiber L, Haupt P (2003) Finite deformations of a carbone black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements. Eur J Mech A 22:309–324

    Article  MATH  Google Scholar 

  72. Charrier P, Dacorogna B, Hanouzet B, Laborde P (1988) An existence theorem for slightly compressible materials in nonlinear elasticity. SIAM J Math Anal 19:70–85

    Article  MathSciNet  MATH  Google Scholar 

  73. Goldberg W, Lianis G (1970) Stress relaxation in combined torsion–tension. J Appl Mech 37(1):53–60

    Article  Google Scholar 

  74. Yuan H-L, Lianis G (1972) Experimental investigation of nonlinear viscoelasticity in combined finite torsion–tension. Trans Soc Rheol 16(4):615–633

    Article  Google Scholar 

  75. Yuan H-L (1971) Static and dynamique experimental investigation of nonlinear isothermal viscoelasticity. PhD Thesis, Purdue University

  76. Hartmann S (2001) Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int J Solids Struct 38(44–45):7999–8018

    Article  MATH  Google Scholar 

  77. Bell J-F (1973) The experimental foundation of solid mechanics. In: Trusdell C (ed) Hundbuch der Physik, VIa/1. Springer, Berlin

    Google Scholar 

  78. Batra R-C, Yu J-H (1999) Linear constitutive relations in isotropic finite viscoelasticity. J Elasticity 55:73–77

    Article  MATH  Google Scholar 

  79. Batra R-C (1998) Linear constitutive relations in isotropic finite elasticity. J Elasticity 51:243–245

    Article  MathSciNet  MATH  Google Scholar 

  80. Freed A, Diethelm K (2006) Fractional calculus in biomechanics: a 3D viscoelastic model using regularized fractional-derivative kernels with application to the human calcaneal fat pad. Biomech Model Mechanobiol 5:203–215

    Article  Google Scholar 

  81. Lion A (1998) Thixotropic behaviour of rubber under dynamic loading histories: experiments and theory. J Mech Phys Solids 46(5):895–930

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Ferry J-D (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their insightful comments that have significantly improved a preliminary version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hocine Bechir.

Appendices

Appendix 1: Resolution of fractional differential equation

The analytical solution of linear fractional differential equations (FDEs) with constant coefficients can be obtained using the Laplace transform technique.

In the case of relaxation, the Laplace transform formula for the Caputo fractional derivatives involves the value of the function f(t) at the lower terminal \(t=0\):

$$\begin{aligned} \mathcal {L}[{D}^{\alpha }f(t)]=p^{\alpha }\mathcal {L}[f(t)]-f(0)p^{\alpha -1}. \end{aligned}$$
(68)

Let us consider the following FDE:

$$\begin{aligned} {\mathbf {S}}(t)+\tau _\mathrm{R}^\alpha {D}^\alpha {\mathbf {S}}(t)=\frac{\partial {W}}{\partial {\mathbf {E}(t)}}-2\mu _0\tau _\mathrm{R}^\alpha \xi ^{-1}(t) {D}^\alpha {\mathbf {e}}(t), \end{aligned}$$
(69)

with the initial condition \({\mathbf {S}}(0)=0\).

Applying the Laplace transform to both sides of this equation, and using the linearity of the Laplace transform, we obtain the following result:

$$\begin{aligned} \mathcal {L}\left[ {\mathbf {S}}(t)\right] +\tau _\mathrm{R}^\alpha \mathcal {L}\left[ {D}^\alpha {{\mathbf {S}}}(t)\right] = \mathcal {L}\left[ \frac{\partial {W}}{\partial {\mathbf {E}(t)}}\right] -2\mu _0\tau _\mathrm{R}^\alpha \mathcal {L}\left[ \xi ^{-1}(t){D}^\alpha {{\mathbf {e}}}(t)\right] . \end{aligned}$$
(70)

Then

$$\begin{aligned} {\hat{\mathbf {S}}}(p) + \tau _\mathrm{R}^\alpha p^\alpha \hat{\mathbf {S}}(p)={\hat{\mathbf {F}}}_1(p)-2\mu _0\tau _\mathrm{R}^ \alpha {\hat{\mathbf {F}}}_2(p), \end{aligned}$$
(71)

where \({\hat{\mathbf {F}}}_1(p)\) and \({\hat{\mathbf {F}}}_2(p)\) denote the Laplace transforms of \(\partial {W}/\partial {\mathbf {E}(t)}\) and \(\xi ^{-1}(t){D}^\alpha {{\mathbf {e}}}(t)\).

The equation’s solution is

$$\begin{aligned} {\hat{\mathbf {S}}}(p) =\left( \frac{\tau _\mathrm{R}^{-\alpha }}{p^\alpha +\tau _\mathrm{R}^{-\alpha }}\right) {\hat{\mathbf {F}}}_1(p)-2\mu _0\left( \frac{1}{p^\alpha +\tau _\mathrm{R}^{-\alpha }}\right) {\hat{\mathbf {F}}}_2(p). \end{aligned}$$
(72)

The solution in the time–space domain is obtained using the inverse Laplace transform, and we obtain

$$\begin{aligned} {\mathbf {S}}(t)= & {} \tau _\mathrm{R}^{-\alpha }\int \limits _{0}^{t}\frac{\partial W}{\partial \mathbf {E}(s)}(t-s)^{\alpha -1}E_\alpha ,_\alpha \Bigl (-\Bigl (\frac{t-s}{\tau _\mathrm{R}}\Bigr )^\alpha \Bigr ) {\mathrm {d}}s\nonumber \\&-2\mu _0\int \limits _{0}^{t}\xi ^{-1}(s){D}^\alpha {\mathbf {e}}(s)(t-s)^{\alpha -1}E_\alpha ,_\alpha \Bigl (-\Bigl (\frac{t-s}{\tau _\mathrm{R}}\Bigr )^\alpha \Bigr ) {\mathrm {d}}s. \end{aligned}$$
(73)

Application of the Laplace transform to the FDE, in the case of \(\xi \) equal to a constant, gives

$$\begin{aligned} {\hat{\mathbf {S}}}(p) =\Bigl (\frac{\tau _\mathrm{R}^{-\alpha }}{p^\alpha +\tau _\mathrm{R}^{-\alpha }}\Bigr ){\hat{\mathbf {F}}}_1(p)-2\mu _0\xi ^{-1}\Bigl (\frac{p^\alpha }{p^\alpha +\tau _\mathrm{R}^{-\alpha }}\Bigr )\hat{ {\mathbf {e}}}(p). \end{aligned}$$
(74)

We have

$$\begin{aligned} \mathcal {L}^{-1}\left[ \left( \frac{p^\alpha }{p^\alpha +\tau _\mathrm{R}^{-\alpha }}\right) {\hat{\mathbf {e}}}(p)\right] =\mathcal {L}^{-1}\left[ \left( \frac{p^{\alpha -1}}{p^\alpha +\tau _\mathrm{R}^{-\alpha }}\right) \Bigr (p {\hat{\mathbf {e}}}(p)\Bigr )\right] . \end{aligned}$$
(75)

We obtain the solution as follows:

$$\begin{aligned} {\mathbf {S}}(t)=\tau _\mathrm{R}^{-\alpha }\int \limits _{0}^{t}\frac{\partial W}{\partial \mathbf {E}(s)}(t-s)^{\alpha -1}E_\alpha ,_\alpha \left( -\Bigl (\frac{t-s}{\tau _\mathrm{R}}\right) ^\alpha \Bigr ) {\mathrm {d}}s -2\mu _0\xi ^{-1}\int \limits _{0}^{t}{\dot{\mathbf {e}}}(s)E_\alpha ,_1\left( -\Bigl (\frac{t-s}{\tau _\mathrm{R}}\right) ^\alpha \Bigr ) {\mathrm {d}}s. \end{aligned}$$
(76)

Appendix 2: Mittag–Leffler function

The function \(E_\alpha \), with \(\alpha >0\) defined by \(E_\alpha (z)=\sum _{k=0}^{\infty }z^k/\varGamma (\alpha k+1)\), is called the Mittag–Leffler function of order \(\alpha \). This function provides a simple generalization of the exponential function, i.e., \(E_1(z)=\mathrm {exp}(z)\).

When \(0<\alpha \le 1\), the Mittag–Leffler function on the negative axis is completely monotone and is capable of representing phenomena of relaxation. The graph of the function \(E_\alpha (-x^\alpha )\), with \(x=(t/\tau _\mathrm{R})\ge 0\), is illustrated in Fig. 11 for different values of \(\alpha \).

Fig. 11
figure 11

Mittag–Leffler function for different values of \(\alpha \)

Appendix 3: Lianis material functions for SBR circular bar at \(0\,^{\circ }\)C [73]

The Lianis constitutive equation for an isotropic incompressible viscoelastic material is given by

$$\begin{aligned} {\varvec{\sigma }}(t)= & {} \left[ a+\Bigl (I_1({\mathbf {B}})-3\Bigl )b+cI_1({\mathbf {B}})\right] {\mathbf {B}}-c{\mathbf {B}}^2+2\int \limits _{-\infty }^{t}\varphi _0(t-\tau ){\dot{\mathbf {C}}}_t(\tau ){\mathrm {d}}\tau \nonumber \\&+\int \limits _{-\infty }^{t}\varphi _1(t-\tau )[{\mathbf {B}}{\dot{\mathbf {C}}}_t(\tau )+{\dot{\mathbf {C}}}_t(\tau ){\mathbf {B}}]{\mathrm {d}}\tau + \int \limits _{-\infty }^{t}\varphi _2(t-\tau ) [{\mathbf {B}}^2{\dot{\mathbf {C}}}_t(\tau )+ {\dot{\mathbf {C}}}_t(\tau ){\mathbf {B}}^2]{\mathrm {d}}\tau \nonumber \\&+{\mathbf {B}}\int \limits _{-\infty }^{t}\varphi _3(t-\tau ) I_1({\mathbf {B}}{\dot{\mathbf {C}}}_t(\tau )){\mathrm {d}}\tau - P(t)\mathbf {I}, \end{aligned}$$
(77)

where abc are constants corresponding to the equilibrium stress, and the \(\varphi _k(u)\) are relaxation functions that approach zero as \(u\rightarrow \infty \).

For a SBR at \(0\,^{\circ }\)C, the constants abc were found to be \(a=29.5\) psi, \(b=0\), \(c=51.07\) psi, where 1 psi = \(6.8948 \times 10^3\) Pa, and the Lianis material functions were related by

$$\begin{aligned} \varphi _1(t)=\varphi _3(t)=-2\varphi _2(t). \end{aligned}$$
(78)

The relaxation functions \(\varphi _k(t)\) are tabulated in Table 3.

Table 3 Lianis material functions for SBR at \(0\,^{\circ }\)C

Appendix 4: Tension–torsion of a circular cylinder

In cylindrical coordinates and for the extension–torsion of a solid circular cylinder made of an incompressible isotropic material, we have

$$\begin{aligned} {\mathbf {F}}= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{1}{\sqrt{\lambda }} &{} 0 &{} 0 \\ 0 &{} \frac{1}{\sqrt{\lambda }} &{} \sqrt{\lambda }\psi R \\ 0 &{} 0 &{} \lambda \end{array} \right) , \end{aligned}$$
(79)
$$\begin{aligned} {\mathbf {B}}= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} \lambda ^{-1} &{} 0 &{} 0 \\ 0 &{} \lambda ^{-1}+\lambda (\psi R)^2 &{} \lambda ^{3/2}\psi R \\ 0 &{} \lambda ^{3/2}\psi R &{} \lambda ^2 \end{array}\right) , \end{aligned}$$
(80)
$$\begin{aligned} {\mathbf {C}}= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} \lambda ^{-1}&{} 0 &{} 0 \\ 0 &{} \lambda ^{-1} &{} \psi R \\ 0 &{} \psi R &{} \lambda ^2+\lambda (\psi R)^2 \end{array}\right) , \end{aligned}$$
(81)
$$\begin{aligned} {\mathbf {e}}= & {} \frac{1}{2} \left( \begin{array}{c@{\quad }c@{\quad }c} \lambda -1&{} 0 &{} 0 \\ 0 &{} \lambda +(\psi R)^2-1 &{} -\lambda ^{-1}\psi R \\ 0 &{} -\lambda ^{-1}\psi R &{} \lambda ^{-2}-1 \end{array}\right) . \end{aligned}$$
(82)

The equation of equilibrium is given by

$$\begin{aligned} \mathrm{div}\,{\varvec{\sigma }}=0. \end{aligned}$$
(83)

Equations (79)–(82), together with the constitutive equation of the proposed model, imply that

$$\begin{aligned} {\varvec{\sigma }}= \left( \begin{array}{c@{\quad }c@{\quad }c} \sigma _{rr} &{} 0 &{} 0 \\ 0 &{} \sigma _{\theta \theta } &{} \sigma _{\theta z} \\ 0 &{} \sigma _{\theta z} &{} \sigma _{zz} \end{array}\right) , \end{aligned}$$
(84)

where the nonzero components of the Cauchy stress tensor are given by

$$\begin{aligned} \sigma _{rr}(t)= & {} 2\tau _\mathrm{R}^{-\alpha }B_{rr}(t)\left[ \int \limits _{0}^{t}\left( c_{10}+c_{01}I_1({\mathbf {C}})\right) K(t-s) {\mathrm {d}}s \right] -2\tau _\mathrm{R}^{-\alpha }c_{01}F_{rr}^2(t)\left[ \int \limits _{0}^{t}C_{rr}(s) K(t-s) {\mathrm {d}}s \right] \nonumber \\&-2\mu _0F_{rr}^2(t)\left[ \int \limits _{0}^{t}\xi ^{-1}(s) {D}^\alpha e_{rr}(s) K(t-s) {\mathrm {d}}s \right] -P(t), \end{aligned}$$
(85)
$$\begin{aligned} \sigma _{\theta \theta }(t)= & {} 2\tau _\mathrm{R}^{-\alpha }\left\{ B_{\theta \theta }(t)\left[ \int \limits _{0}^{t}\left( c_{10}+c_{01}I_1({\mathbf {C}})\right) K(t-s) {\mathrm {d}}s \right] -2\tau _\mathrm{R}^{-\alpha }c_{01}\left\{ F_{\theta \theta }^2(t) \left[ \int \limits _{0}^{t}C_{\theta \theta }(s) K(t-s) {\mathrm {d}}s \right] \right. \right. \nonumber \\&\left. +2F_{\theta \theta }(t)F_{\theta z}(t)\left[ \int \limits _{0}^{t}C_{\theta z}(s) K(t-s) {\mathrm {d}}s \right] +F_{\theta z}^2(t)\left[ \int \limits _{0}^{t}C_{zz}(s) K(t-s) {\mathrm {d}}s \right] \right\} \nonumber \\&-2\mu _0\left\{ F_{\theta \theta }^2(t)\left[ \int \limits _{0}^{t} \xi ^{-1}(s) {D}^\alpha e_{\theta \theta }(s)K(t-s){\mathrm {d}}s \right] +2F_{\theta \theta }(t)F_{\theta z}(t)\left[ \int \limits _{0}^{t} \xi ^{-1}(s) {D}^\alpha e_{\theta z}(s) K(t-s) {\mathrm {d}}s \right] \right. \nonumber \\&\left. +F_{\theta z}^2(t)\left[ \int \limits _{0}^{t}\xi ^{-1}(s) {D}^\alpha e_{zz}(s) K(t-s) {\mathrm {d}}s \right] \right\} -P(t), \end{aligned}$$
(86)
$$\begin{aligned} \sigma _{zz}(t)= & {} 2\tau _\mathrm{R}^{-\alpha }B_{zz}(t)\left[ \int \limits _{0}^{t} \Bigl (c_{10}+c_{01}I_1({\mathbf {C}})\Bigr )K(t-s) {\mathrm {d}}s \right] -2\tau _\mathrm{R}^{-\alpha }c_{01}F_{zz}^2(t)\left[ \int \limits _{0}^{t} C_{zz}(s) K(t-s) {\mathrm {d}}s \right] \nonumber \\&-2\mu _0F_{zz}^2(t)\left[ \int \limits _{0}^{t}\xi ^{-1}(s) {D}^\alpha e_{zz}(s) K(t-s) {\mathrm {d}}s \right] -P(t), \end{aligned}$$
(87)
$$\begin{aligned} \sigma _{\theta z}(t)= & {} 2\tau _\mathrm{R}^{-\alpha }B_{\theta z}(t) \left[ \int \limits _{0}^{t}\Bigl (c_{10}+c_{01}I_1({\mathbf {C}})\Bigr ) K(t-s) {\mathrm {d}}s \right] -2\tau _\mathrm{R}^{-\alpha }c_{01}\left\{ F_{\theta \theta }(t)F_{zz}(t) \left[ \int \limits _{0}^{t}C_{\theta z}(s) K(t-s) {\mathrm {d}}s \right] \right. \nonumber \\&\left. +F_{\theta z}(t)F_{zz}(t)\left[ \int \limits _{0}^{t}C_{zz}(s) K(t-s) {\mathrm {d}}s \right] \right\} -2\mu _0\left\{ F_{\theta \theta }(t)F_{zz}(t)\left[ \int \limits _{0}^{t} \xi ^{-1}(s) {D}^\alpha e_{\theta z}(s) K(t-s) {\mathrm {d}}s \right] \right. \nonumber \\&\left. +F_{\theta z}(t)F_{zz}(t)\left[ \int \limits _{0}^{t}\xi ^{-1}(s) { D}^\alpha e_{zz}(s) K(t-s) {\mathrm {d}}s \right] \right\} , \end{aligned}$$
(88)

where \(I_1({\mathbf {C}})=\lambda ^2+2\lambda ^{-1}+\lambda (\psi R)^2\).

Substituting (84) into (83), one obtains

$$\begin{aligned}&\frac{\partial \sigma _{rr}}{\partial r}+\frac{\partial \sigma _{rz}}{\partial z}+\frac{\partial \sigma _{\theta r}}{r\partial \theta }+\frac{\sigma _{rr}-\sigma _{\theta \theta }}{r}= \frac{\partial \sigma _{rr}}{\partial r}+\frac{\sigma _{rr}-\sigma _{\theta \theta }}{r}=0, \end{aligned}$$
(89)
$$\begin{aligned}&\frac{\partial \sigma _{r\theta }}{\partial r}+\frac{\partial \sigma _{z\theta }}{\partial z}+\frac{\partial \sigma _{\theta \theta }}{r\partial \theta }+2\frac{\sigma _{r\theta }}{r}= \frac{\partial P}{\partial \theta }=0, \end{aligned}$$
(90)
$$\begin{aligned}&\frac{\partial \sigma _{rz}}{\partial r}+\frac{\partial \sigma _{z\theta }}{r\partial \theta }+\frac{\partial \sigma _{zz}}{\partial z}+\frac{\sigma _{rz}}{r}=\frac{\partial P}{\partial z}=0. \end{aligned}$$
(91)

We see that Eq. (90) implies that \({\partial } P/{\partial } \theta =0\) and Eq. (91) implies that \(\partial P/\partial z=0\). This means that P is independent of \(\theta \) and z and is a function of t and r only. Then (89) becomes

$$\begin{aligned} \frac{\partial \sigma _{rr}}{\partial r}+\frac{1}{r}(\sigma _{rr}- \sigma _{\theta \theta })=0. \end{aligned}$$
(92)

The integration of (92) leads to

$$\begin{aligned} \int \limits _{r}^{r_0}{\mathrm {d}}\sigma _{rr}=\sigma _{rr}(r_0,t)- \sigma _{rr}(r,t)=-\int \limits _{r}^{r_0}\frac{1}{r}(\sigma _{rr}- \sigma _{\theta \theta }){\mathrm {d}}r. \end{aligned}$$
(93)

We have

$$\begin{aligned} \sigma _{rr}(r=r_0,t)=0. \end{aligned}$$
(94)

One can deduce from Eq. (93) that

$$\begin{aligned} \sigma _{rr}(r,t)=\int \limits _{r}^{r_0}\frac{1}{r}(\sigma _{rr}- \sigma _{\theta \theta }){\mathrm {d}}r. \end{aligned}$$
(95)

According to Eqs. (85) and (86), one can write the following relations:

$$\begin{aligned} \sigma _{rr}(r,t)= & {} T_1(r,t)-P(r,t), \end{aligned}$$
(96)
$$\begin{aligned} \sigma _{\theta \theta }(r,t)= & {} T_2(r,t)-P(r,t), \end{aligned}$$
(97)

where

$$\begin{aligned} T_1(r,t)= & {} 2\tau _\mathrm{R}^{-\alpha }B_{rr}(t)\left[ \int \limits _{0}^{t} \Bigl (c_{10}+c_{01}I_1({\mathbf {C}})\Bigr )K(t-s) {\mathrm {d}}s\right] -2\tau _\mathrm{R}^{-\alpha }c_{01}F_{rr}^2(t)\left[ \int \limits _{0}^{t}C_{rr} (s) K(t-s) {\mathrm {d}}s \right] \nonumber \\&-2\mu _0F_{rr}^2(t)\left[ \int \limits _{0}^{t}\xi ^{-1}(s) {D}^\alpha e_{rr}(s) K(t-s) {\mathrm {d}}s \right] , \end{aligned}$$
(98)
$$\begin{aligned} T_2(r,t)= & {} 2\tau _\mathrm{R}^{-\alpha }B_{\theta \theta }(t)\left[ \int \limits _{0}^{t}\Bigl (c_{10}+ c_{01}I_1({\mathbf {C}})\Bigr )K(t-s) {\mathrm {d}}s\right] -2\tau _\mathrm{R}^{-\alpha }c_{01}\left\{ F_{\theta \theta }^2(t) \left[ \int \limits _{0}^{t}C_{\theta \theta }(s) K(t-s) {\mathrm {d}}s \right] \right. \nonumber \\&\left. +2F_{\theta \theta }(t)F_{\theta z}(t)\left[ \int \limits _{0}^{t}C_{\theta z}(s) K(t-s) {\mathrm {d}}s \right] +F_{\theta z}^2(t)\left[ \int \limits _{0}^{t}C_{zz}(s) K(t-s) { \mathrm {d}}s \right] \right\} \nonumber \\&-2\mu _0\left\{ F_{\theta \theta }^2(t)\left[ \int \limits _{0}^{t} \xi ^{-1}(s) {D}^\alpha e_{\theta \theta }(s)K(t-s){\mathrm {d}}s \right] +2F_{\theta \theta }(t)F_{\theta z}(t)\left[ \int \limits _{0}^{t}\xi ^{-1}(s) {D}^ \alpha e_{\theta z}(s)K(t-s){\mathrm {d}}s \right] \right. \nonumber \\&\left. +F_{\theta z}^2(t)\left[ \int \limits _{0}^{t}\xi ^{-1}(s) {D}^\alpha e_{zz}(s) K(t-s) {\mathrm {d}}s \right] \right\} . \end{aligned}$$
(99)

Thus, Eq. (95) gives

$$\begin{aligned} \sigma _{rr}(r,t)=\int \limits _{r}^{r_0}\frac{1}{r}(T_1-T_2){\mathrm {d}}r. \end{aligned}$$
(100)

Substituting Eqs. (100) into (96), we can easily find the Lagrange multiplier, i.e., the pressure P(rt), in terms of the material parameters \(\lambda (t)\) and \(\psi (t)\):

$$\begin{aligned} P(r,t)=T_1(r,t)-\int \limits _{r}^{r_0}\frac{1}{r} [T_1(r,t)-T_2(r,t)]{\mathrm {d}}r. \end{aligned}$$
(101)

After calculations we obtain

$$\begin{aligned} P(r,t)= & {} 2c_{10}\lambda ^{-1}(t)(1-g(t)) +2c_{01}\tau _\mathrm{R}^{-\alpha }\lambda ^{-1}(t)\left[ \int \limits _{0}^{t}\Bigl (\lambda ^2(s)+\lambda ^{-1}(s)+[r\lambda (s)\psi (s)]^2\Bigr )K(t-s){\mathrm {d}}s \right] \nonumber \\&-\,2\mu _0\lambda ^{-1}(t)\left[ \int \limits _{0}^{t}\xi ^{-1}(s) {D}^\alpha e_{rr}(s)K(t-s){\mathrm {d}}s \right] +\int \limits _{r}^{r_0}\Biggl \{2c_{10}[\lambda (t)\psi (t)]^2 \Bigl (1-g(t)\Bigr )r\nonumber \\&+\,4c_{01}\tau _\mathrm{R}^{-\alpha }[\lambda (t)\psi (t)]^2r\int \limits _{0}^{t} \lambda ^{-1}(s)K(t-s){\mathrm {d}}s -4c_{01}\lambda ^{1/2}(t)\psi (t)\tau _\mathrm{R}^{-\alpha }\int \limits _{0}^{t}[\lambda ^{1/2}(s)\psi (s)r]K(t-s){\mathrm {d}}s \Biggr \}{\mathrm {d}}r\nonumber \\&+\,\int \limits _{r}^{r_0}\left\{ 2\mu _0r^{-1}\lambda ^{-1}(t) \left[ \int \limits _{0}^{t}\xi ^{-1}(s) {D}^\alpha e_{rr}(s)K(t-s){\mathrm {d}}s -\int \limits _{0}^{t}\xi ^{-1}(s) {D}^\alpha e_{\theta \theta }(s)K(t-s){\mathrm {d}}s\right] \right. \nonumber \\&-\,4\mu _0\lambda ^{1/2}(t)\psi (t)\left[ \int \limits _{0}^{t}\xi ^{-1}(s) {D}^\alpha e_{\theta z}(s)K(t-s){\mathrm {d}}s\right] \nonumber \\&\left. -\,2\mu _0r[\lambda (t)\psi (t)]^2\left[ \int \limits _{0}^{t}\xi ^{-1}(s) {D}^ \alpha e_{zz}(s) K(t-s) {\mathrm {d}}s\right] \right\} {\mathrm {d}}r. \end{aligned}$$
(102)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzidi, S., Bechir, H. & Brémand, F. Phenomenological isotropic visco-hyperelasticity: a differential model based on fractional derivatives. J Eng Math 99, 1–28 (2016). https://doi.org/10.1007/s10665-015-9818-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-015-9818-6

Keywords

Mathematics Subject Classification

Navigation