Skip to main content
Log in

Impact of interfacial slip on the stability of liquid two-layer polymer films

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

In this work we derive systems of coupled thin-film equations for immiscible liquid polymer layers on a solid substrate. We take into account slip between liquids and solids and also slip between both liquids. On the scale of tens of nanometres, such two-layer systems are susceptible to instability and may rupture and dewet due to intermolecular forces. The stability of the two-layer system and its significant dependence on the order of magnitude of slip is investigated via these thin-film models. With weak slip at both the liquid–liquid and liquid–solid interfaces and polymer layers of comparable thickness, the dispersion relation typically shows two local maxima, one in the long-wave regime and the other at moderate wavenumbers. The former is associated with perturbations that mainly affect the gas–liquid interface and the latter with larger relative perturbation amplitudes at the liquid–liquid interface. Increasing the slip at the liquid–liquid interface generally favours the long-wave regime and can in fact revert the mode of the instability and thus significantly change the spinodal patterns. Moreover, the maxima shift to small wavenumbers for increasing slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brochard Wyart F, Martin P, Redon C (1993) Liquid/liquid dewetting. Langmuir 9:3682–3690

    Google Scholar 

  2. Pototsky A, Bestehorn M, Merkt D, Thiele U (2004) Alternative pathways of dewetting for a thin liquid two-layer film. Phys Rev E 70(2):25201

    Google Scholar 

  3. Pototsky A, Bestehorn M, Merkt D, Thiele U (2005) Morphology changes in the evolution of liquid two-layer films. J Chem Phys 122:224711

    Article  ADS  Google Scholar 

  4. Fisher L, Golovin A (2005) Nonlinear stability analysis of a two-layer thin liquid film: dewetting and autophobic behavior. J Colloid Interface Sci 291:515–528

    Article  Google Scholar 

  5. Fisher L, Golovin A (2007) Instability of a two-layer thin liquid film with surfactants: dewetting waves. J Colloid Interface Sci 307:203–214

    Article  Google Scholar 

  6. Bandyopadhyay D, Gulabani R, Sharma A (2005) Instability and dynamics of thin liquid bilayers. Ind Eng Chem Res 44:1259–1272

    Article  Google Scholar 

  7. Bandyopadhyay D, Sharma A (2006) Nonlinear instabilities and pathways of rupture in thin liquid bilayers. J Chem Phys 125:054711

    Google Scholar 

  8. Craster RV, Matar O (2006) On the dynamics of liquid lenses. J Colloid Interface Sci 303:503–506

    Article  Google Scholar 

  9. Lenz RD, Kumar S (2007) Competitive displacement of thin liquid films on chemically patterned substrates. J Fluid Mech 571:33–57

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Lenz RD, Kumar S (2007) Instability of confined thin liquid film trilayers. J Colloid Interface Sci 316:660–670

    Article  Google Scholar 

  11. Thiele U, Archer AJ, Plapp M (2012) Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration. Phys Fluids 24:102107

    Google Scholar 

  12. Craster RV, Matar O (2009) Dynamics and stability of thin liquid films. Rev Mod Phys 81:1131–1198

    Article  ADS  Google Scholar 

  13. Lin CC (1979) A mathematical model for viscosity in capillary extrusion of two-component polyblends. Polym J (Tokyo) 11:185–192

    Article  Google Scholar 

  14. Zhao R, Macosko C (2002) Slip at polymer–polymer interfaces: rheological measurements on coextruded multilayers. J Rheol 46:145–167

    Article  ADS  Google Scholar 

  15. Zeng H, Tian Y, Zhao B, Tirrell M, Israelachvili J (2009) Friction at the liquid/liquid interface of two immiscible polymer films. Langmuir 124–132

  16. Lin Z, Kerle T, Russell T, Schaffer E, Steiner U (2002) Electric field induced dewetting at polymer/polymer interfaces. Macromolecules 35:6255–6262

    Article  ADS  Google Scholar 

  17. Brochard-Wyart F, de Gennes P (1992) Shear-dependent slippage at a polymer/solid interface. Langmuir 8:3033–3037

    Article  Google Scholar 

  18. Léger L (2003) Friction mechanisms and interfacial slip at fluid–solid interfaces. J Phys Condens Matter 15:S19–S29

    Article  Google Scholar 

  19. Lauga E, Brenner MP, Stone H (2007) Microfluidics: the no-slip boundary condition. In: Tropea C, Yarin A, Foss JF (eds) Handbook of experimental fluid dynamics. Springer, New York, pp 1219–1240

  20. Kargupta K, Sharma A, Khanna R (2004) Instability, dynamics and morphology of thin slipping films. Langmuir 20:244–253

    Article  Google Scholar 

  21. Münch A, Wagner B, Witelski TP (2006) Lubrication models with small to large slip lengths. J Eng Math 53:359–383

    Article  Google Scholar 

  22. Fetzer R, Jacobs K, Münch A, Wagner B, Witelski TP (2005) New slip regimes and the shape of dewetting thin liquid films. Phys Rev Lett 95:127801

    Article  ADS  Google Scholar 

  23. Blossey R, Münch A, Rauscher M, Wagner B (2006) Slip vs viscoelasticity in dewetting thin films. EPhJ E Soft Matter 20:267–271

    Article  Google Scholar 

  24. Vilmin T, Raphael E (2005) Dewetting of thin viscoelastic polymer films on slippery substrates. Europhys Lett 72:781

    Article  ADS  Google Scholar 

  25. Fetzer R, Münch A, Wagner B, Rauscher M, Jacobs K (2007) Quantifying hydrodynamic slip: a comprehensive analysis of dewetting profiles. Langmuir 23:10559–10566

    Article  Google Scholar 

  26. Bäumchen O, Fetzer R, Jacobs K (2009) Reduced interfacial entanglement density affects the boundary conditions of polymer flow. Phys Rev Lett 103:247801

    Article  ADS  Google Scholar 

  27. Goveas J, Fredrickson G (1998) Apparent slip at a polymer–polymer interface. Eur Phys J B Condens Matter Complex Syst 2:79–92

    Article  Google Scholar 

  28. Adhikari NP, Goveas JL (2004) Effects of slip on the viscosity of polymer melts. J Polym Sci B Polym Phys 42:1888–1904

    Article  ADS  Google Scholar 

  29. Brochard-Wyart F, de Gennes P (1993) Sliding molecules at a polymer/polymer interface. C R Acad Sci Ser II(327):13–17

    Google Scholar 

  30. Ajdari A (1993) Slippage at a polymer/polymer interface: entanglements and associated friction. C R Acad Sci Ser II 317:1159–1163

    MATH  Google Scholar 

  31. Ajdari A, Wyart FB, de Gennes PG, Leibler L, Viovy J, Rubinstein M (1994) Slippage of an entangled polymer melt on a grafted surface. Physica A 204:17–39

    Article  ADS  Google Scholar 

  32. Israelachvili JN (1992) Intermolecular and surface forces. Academic, London

    Google Scholar 

  33. Sharma A (1993) Relationship of thin-film stability and morphology to macroscopic parameters of wetting in the apolar and polar sytems. Langmuir 9:861–869

    Article  Google Scholar 

  34. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2011) Wetting and spreading. Rev Mod Phys 81:739–805

    Article  ADS  Google Scholar 

  35. Rauscher M, Blossey R, Münch A, Wagner B (2008) Spinodal dewetting of thin films with large interfacial slip: implications from the dispersion relation. Langmuir 24:12290–12294

    Article  Google Scholar 

  36. Bommer S, Jachalski S, Peschka D, Seemann R, Wagner N (2013) Droplets on liquids and their long way into equilibrium. arXiv, preprint arXiv:1212.1183

  37. Ward MH (2011) Interfacial thin films rupture and self-similarity. Phys Fluids 23:062105–062105-14

    Google Scholar 

  38. Witelski TP, Bernoff AJ (1999) Stability of self-similar solutions for Van der Waals driven thin film rupture. Phys Fluids 11:2443–2445

    Google Scholar 

  39. Renardy M (2001) Finite time breakup of viscous filaments. Z Angew Math Phys 52:881–887

    Google Scholar 

  40. Peschka D, Münch A, Niethammer B (2010) Thin-film rupture for large slip. J Eng Math 66:33–51

    Article  MATH  Google Scholar 

  41. Peschka D, Niethammer B, Münch A (2010) Self-similar rupture of viscous thin films in the strong-slip regime. Nonlinearity 23:409–427

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors SJ, DP and BW are grateful for the support by the DFG of their project within the priority programme SPP 1506, ‘Transport at Fluidic Interfaces’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Münch.

Appendices

Appendix 1: Derivation of thin-film model for strong slip at liquid–liquid and solid–liquid interfaces

We expand the variables in (2.12) as

$$\begin{aligned}&\!\!\!\left( u_1, w_1,u_2, w_2\right) = \left( {u_1^{(0)}}, {w_1^{(0)}},{u_2^{(0)}}, {w_2^{(0)}}\right) + \varepsilon ^2_{\ell }\, \left( {u_1^{(1)}}, {w_1^{(1)}}, {u_2^{(1)}}, {w_2^{(1)}}\right) + O\left( \varepsilon ^{4}_{\ell }\right) ,\end{aligned}$$
(6.1a)
$$\begin{aligned}&\!\!\!\left( p_1, p_2\right) = \left( {p_1^{(0)}}, {p_2^{(0)}}\right) + \varepsilon ^2_{\ell }\, \left( {p_1^{(1)}}, {p_2^{(1)}}\right) + O\left( \varepsilon ^{4}_{\ell }\right) ,\end{aligned}$$
(6.1b)
$$\begin{aligned}&\!\!\!\left( h_1, h_2\right) = \left( {h_1^{(0)}}, {h_2^{(0)}}\right) + \varepsilon ^2_{\ell }\, \left( {h_1^{(1)}}, {h_2^{(1)}}\right) + O\left( \varepsilon ^{4}_{\ell }\right) \!. \end{aligned}$$
(6.1c)

and consider in turn the leading- and next-order problem in \(\varepsilon _{\ell }\).

1.1 Leading-order problem

$$\begin{aligned} 0&= {\partial _{zz}}{u_2^{(0)}}, \end{aligned}$$
(6.2a)
$$\begin{aligned} 0&= -{\partial _z}{p_2^{(0)}}+ {\partial _{zz}}{w_2^{(0)}}, \end{aligned}$$
(6.2b)
$$\begin{aligned} 0&= {\partial _x}{u_2^{(0)}}+{\partial _z}{w_2^{(0)}}, \end{aligned}$$
(6.2c)
$$\begin{aligned} 0&= {\partial _{zz}}{u_1^{(0)}}, \end{aligned}$$
(6.2d)
$$\begin{aligned} 0&= -{\partial _z}{p_1^{(0)}}+\mu {\partial _{zz}}{w_1^{(0)}}, \end{aligned}$$
(6.2e)
$$\begin{aligned} 0&= {\partial _x}{u_1^{(0)}}+{\partial _z}{w_1^{(0)}}. \end{aligned}$$
(6.2f)

For the boundary condition at the free surface \(z={h_2^{(0)}}\) we get for the normal, tangential and kinematic conditions, respectively,

$$\begin{aligned}&{p_2^{(0)}}-\phi '({h^{(0)}}) + {\partial _{xx}}{h_2^{(0)}}- 2\left( {\partial _z}{w_2^{(0)}}-{\partial _z}{u_2^{(0)}}\,{\partial _x}{h_2^{(0)}}\right) =0, \end{aligned}$$
(6.2g)
$$\begin{aligned}&\!\!\!{\partial _z}{u_2^{(0)}}= 0,\end{aligned}$$
(6.2h)
$$\begin{aligned}&\!\!\!{\partial _t}{h_2^{(0)}}={w_2^{(0)}}-{u_2^{(0)}}{\partial _x}{h_2^{(0)}}. \end{aligned}$$
(6.2i)

For the boundary condition at the free liquid–liquid interface \(z={h_1^{(0)}}\) we get for the normal, tangential and kinematic conditions, respectively,

$$\begin{aligned}&\!\!\!{p_1^{(0)}}-{p_2^{(0)}}+\phi '({h^{(0)}}) + \sigma \,{\partial _{xx}}{h_1^{(0)}}- 2\,\left[ \left( \mu {\partial _z}{w_1^{(0)}}-{\partial _z}{w_2^{(0)}}\right) -\left( \mu {\partial _z}{u_1^{(0)}}-{\partial _z}{u_2^{(0)}}\right) {\partial _x}{h_1^{(0)}}\right] =0, \end{aligned}$$
(6.2j)
$$\begin{aligned}&\!\!\!{\partial _z}\left( \mu {u_1^{(0)}}-{u_2^{(0)}}\right) = 0,\end{aligned}$$
(6.2k)
$$\begin{aligned}&\!\!\!{\partial _t}{h_1^{(0)}}= {w_1^{(0)}}-{u_1^{(0)}}{\partial _x}{h_1^{(0)}}. \end{aligned}$$
(6.2l)

The impermeability condition at \(z={h_1^{(0)}}\) between the two liquid layers is given by

$$\begin{aligned}&\left( {w_2^{(0)}}-{w_1^{(0)}}\right) -\left( {u_2^{(0)}}-{u_1^{(0)}}\right) {\partial _x}{h_1^{(0)}}=0. \end{aligned}$$
(6.2m)

The slip condition at the liquid–liquid interface \(z={h_1^{(0)}}\) is

$$\begin{aligned} {u_2^{(0)}}={\beta _1}\,\frac{\mu +1}{\mu }\,{\partial _z}{u_2^{(0)}}. \end{aligned}$$
(6.2n)

For the boundary conditions at the substrate we assume impermeability and no slip:

$$\begin{aligned}&\!\!\!{w_1^{(0)}}=0, \end{aligned}$$
(6.2o)
$$\begin{aligned}&\!\!\!{\partial _z}{u_1^{(0)}}=0. \end{aligned}$$
(6.2p)

From (6.2d), (6.2p) and (6.2a), (6.2h) we conclude

$$\begin{aligned}&{u_1^{(0)}}= {u_1^{(0)}}(x,t), \end{aligned}$$
(6.3a)
$$\begin{aligned}&{u_2^{(0)}}= {u_2^{(0)}}(x,t), \end{aligned}$$
(6.3b)

and thus the horizontal velocity components are independent of \(z\). Using this in (6.2f), (6.2o) and (6.2c), (6.2m) we find

$$\begin{aligned}&\!\!\!{w_1^{(0)}}=-z{\partial _x}{u_1^{(0)}}, \end{aligned}$$
(6.4a)
$$\begin{aligned}&\!\!\!{w_2^{(0)}}=-\left( z-{h_1^{(0)}}\right) {\partial _x}{u_2^{(0)}}-{\partial _x}{u_1^{(0)}}{h_1^{(0)}}+({u_2^{(0)}}-{u_1^{(0)}}){\partial _x}{h_1^{(0)}}. \end{aligned}$$
(6.4b)

Using (6.2e), (6.2j) and (6.2b), (6.2g) we find

$$\begin{aligned}&\!\!\!{p_1^{(0)}}+2\mu {\partial _x}{u_1^{(0)}}+{\partial _{xx}}{h_2^{(0)}}+\sigma {\partial _{xx}}{h_1^{(0)}}=0, \end{aligned}$$
(6.5a)
$$\begin{aligned}&\!\!\!{p_2^{(0)}}-\phi '\left( {h^{(0)}}\right) +2{\partial _x}{u_2^{(0)}}+{\partial _{xx}}{h_2^{(0)}}=0, \end{aligned}$$
(6.5b)

hence also independent of \(z\).

1.2 Next-order problem

To close the problem to leading order and determine an equation for \({u_1^{(0)}}\) and \({u_2^{(0)}}\), we need to consider the problem to next order. We will formulate here only the equations that are required to accomplish the task of fixing these leading-order velocity components.

The next-order upper and lower layer equations in the bulk are

$$\begin{aligned}&0 = -{\partial _x}{p_2^{(0)}}+ {\partial _{xx}}{u_2^{(0)}}+ {\partial _{zz}}{u_2^{(1)}},\end{aligned}$$
(6.6a)
$$\begin{aligned}&0 = -{\partial _z}{p_2^{(1)}}+ {\partial _{xx}}{w_2^{(0)}}+ {\partial _{zz}}{w_2^{(1)}},\end{aligned}$$
(6.6b)
$$\begin{aligned}&0 = {\partial _x}{u_2^{(1)}}+{\partial _z}{w_2^{(1)}},\end{aligned}$$
(6.6c)
$$\begin{aligned}&0 = -{\partial _x}{p_1^{(0)}}+ \mu {\partial _{xx}}{u_1^{(0)}}+ \mu {\partial _{zz}}{u_1^{(1)}},\end{aligned}$$
(6.6d)
$$\begin{aligned}&0 = -{\partial _z}{p_1^{(1)}}+ \mu {\partial _{xx}}{w_1^{(0)}}+ \mu {\partial _{zz}}{w_1^{(1)}},\end{aligned}$$
(6.6e)
$$\begin{aligned}&0 = {\partial _x}{u_1^{(1)}}+{\partial _z}{w_1^{(1)}}. \end{aligned}$$
(6.6f)

The next-order tangential stress boundary conditions at liquid–gas interface \(z={h_2^{(0)}}\) are

$$\begin{aligned} \!\!\!{\partial _z}{u_2^{(1)}}+{\partial _x}{w_2^{(0)}}-4{\partial _x}{u_2^{(0)}}{\partial _x}{h_2^{(0)}}=0, \end{aligned}$$
(6.6g)
$$\begin{aligned} \!\!\!{\partial _z}\left( \mu {u_1^{(1)}}-{u_2^{(1)}}\right) +{\partial _x}\left( \mu {w_1^{(0)}}-{w_2^{(0)}}\right) -4{\partial _x}\left( \mu {u_1^{(0)}}-{u_2^{(0)}}\right) {\partial _x}{h_1^{(0)}}=0. \end{aligned}$$
(6.6h)

At the liquid–liquid interface \(z={h_1^{(0)}}\) we have

$$\begin{aligned} \!\!\!{u_2^{(0)}}-{u_1^{(0)}}= {\beta _1}\frac{\mu }{\mu +1}\left[ {\partial _z}{u_2^{(1)}}+{\partial _x}{w_2^{(0)}}-4{\partial _x}{u_2^{(0)}}{\partial _x}{h_1^{(0)}}\right] , \end{aligned}$$
(6.6i)

and at the solid substrate \(z=0\),

$$\begin{aligned}&\!\!\! {u_1^{(0)}}=\beta _1{\partial _z}{u_1^{(1)}}. \end{aligned}$$
(6.6j)

In the preceding equations, we have already made use of the fact that \({u_1^{(0)}}\) and \({u_2^{(0)}}\) do not depend on \(z\) and dropped all derivatives of these variables with respect to \(z\).

Integrating now (6.6a) and (6.6d), we obtain

$$\begin{aligned} {\partial _z}\left. {u_2^{(1)}}\right| _{{h_2^{(0)}}}-{\partial _z}\left. {u_2^{(1)}}\right| _{{h_1^{(0)}}} =- h^{(0)} \left( -{\partial _x}{p_2^{(0)}}+{\partial _{xx}}{u_2^{(0)}}\right) , \end{aligned}$$
(6.7)
$$\begin{aligned} {\partial _z}\left. {u_1^{(1)}}\right| _{{h_2^{(0)}}}-{\partial _z}\left. {u_1^{(1)}}\right| _{{h_1^{(0)}}} =- {h_1^{(0)}}\left( -{\partial _x}{p_1^{(0)}}+\mu {\partial _{xx}}{u_1^{(0)}}\right) . \end{aligned}$$
(6.8)

The pressure terms on the right-hand side can be eliminated by using (6.5a) and (6.5b). The terms on the left-hand side can be expressed in terms of the leading-order solutions \({u_2^{(0)}}\), \({u_2^{(0)}}\), \({h_1^{(0)}}\) and \({h_2^{(0)}}\) by first using (6.6g), (6.6h), (6.6i) and (6.6j), then eliminating the occurring \({w_2^{(0)}}\) and \({w_1^{(0)}}\) via the solutions (6.4a) and (6.4b). This yields Eqs. (3.8a) and (3.8c). The other two equations, (3.8b) and (3.8d), are obtained by integrating (6.2c) and (6.2f) and using the conditions (6.2i), (6.2l), (6.2m), (6.2p).

Appendix 2: Dispersion relations for Stokes equations

We start the stability analysis with the Stokes equations

$$\begin{aligned} 0&= -{\partial _x}p_n +\mu _n\left( {\partial _{xx}}u_n +{\partial _{zz}}u_n\right) ,\end{aligned}$$
(7.1a)
$$\begin{aligned} 0&= -{\partial _z}p_n +\mu _n\left( {\partial _{xx}}w_n +{\partial _{zz}}w_n\right) ,\end{aligned}$$
(7.1b)
$$\begin{aligned} 0&= {\partial _x}u_n + {\partial _z}w_n \end{aligned}$$
(7.1c)

and the boundary conditions from the previous sections. To simplify our problem, we introduce the stream functions \(\Psi _1\) and \(\Psi _2\) with

$$\begin{aligned} u_n=\frac{{\partial }\Psi _n}{{\partial }z},\quad w_n=-\frac{{\partial }\Psi _n}{{\partial }x}\quad \quad (n=1,2). \end{aligned}$$
(7.2)

Plugging this into the Stokes equations we obtain two biharmonic equations:

$$\begin{aligned} {\partial }_x^4 \Psi _n +2{\partial }_x^2 {\partial }_z^2 \Psi _n+ {\partial }_z^4 \Psi _n=0\quad \quad (n=1,2). \end{aligned}$$
(7.3)

Linear stability is carried out by introducing small perturbations

$$\begin{aligned} \left( \Psi _n,\ h_1-h_1^0,\ h_2-h_2^0,\ p_n-p_n^0,\ \phi -\phi _0\right) =\delta \left( \psi _n(z), \chi , 1, \Pi _n(z), (1-\chi )\left. \phi '\right| _{h^0}\right) \! \exp ({\mathrm {i}}kx+\omega t) \end{aligned}$$
(7.4)

around the base state

$$\begin{aligned} \Psi _n=0,\quad h_n= h^0_n,\quad h^0=h_2^0-h_1^0,\quad p_n=p_n^0,\quad \phi |_{h^0}=\phi _0, \end{aligned}$$
(7.5)

where \(\omega \) and \(k\) are the growth coefficient and the wavenumber, and obtain

$$\begin{aligned} {\partial }^4_z \psi _n-2k^2 {\partial }_z^2 \psi _n + k^4 \psi _n=0, \end{aligned}$$
(7.6)

with the general solutions

$$\begin{aligned} \psi _n(z)=u_{n1}\exp (kz)+u_{n2}z\exp (kz)+u_{n3} \exp (-kz)+u_{n4}z\exp (-kz), \end{aligned}$$
(7.7)

where the coefficients are determined using the boundary conditions. First, slip at \(z=0\) leads to

$$\begin{aligned} (k-{b\,}k^2)u_{11}+(1-2{\,b\,}k)u_{12}-(k+{b\,}k^2)u_{13}+(1+2{\,b\,}k)u_{14}=0, \end{aligned}$$
(7.8)

while impermeability simply reads

$$\begin{aligned} u_{11}+u_{13}=0. \end{aligned}$$
(7.9)

At the free surface \(z=h_2\) the kinematic condition becomes

$$\begin{aligned} k\hbox {e}^{kh_2^0}u_{21}+kh_2^0\hbox {e}^{kh_2^0}u_{22}+k\hbox {e}^{-kh_2^0}u_{23} +kh_2^0\hbox {e}^{-kh_2^0}u_{24}=\hbox {i}\omega \end{aligned}$$
(7.10)

the tangential stress condition

$$\begin{aligned} k\hbox {e}^{kh_2^0}u_{21}+(kh_2^0+1)\hbox {e}^{kh_2^0}u_{22}+k\hbox {e}^{-kh_2^0}u_{23} +(kh_2^0-1)\hbox {e}^{-kh_2^0}u_{24}=0. \end{aligned}$$
(7.11)

At the liquid–liquid interface \(z=h_1\), the kinematic condition now reads

$$\begin{aligned} k\hbox {e}^{kh_1^0}u_{11}+kh_1^0\hbox {e}^{kh_1^0}u_{12}+k\hbox {e}^{-kh_1^0}u_{13} +kh_1^0\hbox {e}^{-kh_1^0}u_{14} = \hbox {i}\chi \omega \end{aligned}$$
(7.12)

the tangential stress condition

$$\begin{aligned}&\!\!\!\mu _1[k\hbox {e}^{kh_1^0}u_{11}+(kh_1^0+1)\hbox {e}^{kh_1^0}u_{12} +k\hbox {e}^{-kh_1^0}u_{13}+(kh_1^0-1)\hbox {e}^{-kh_1^0}u_{14}] \nonumber \\&-\,\mu _2[k\hbox {e}^{kh_1^0}u_{21}+(kh_1^0+1)\hbox {e}^{kh_1^0}u_{22} +k\hbox {e}^{-kh_1^0}u_{23}+(kh_1^0-1)\hbox {e}^{-kh_1^0}u_{24}]=0. \end{aligned}$$
(7.13)

The impermeability condition is equivalent to

$$\begin{aligned} k\hbox {e}^{kh_1^0}u_{21}+kh_1^0\hbox {e}^{kh_1^0}u_{22} +k\hbox {e}^{-kh_1^0}u_{23}+kh_1^0\hbox {e}^{-kh_1^0}u_{24}=\hbox {i}\chi \omega \end{aligned}$$
(7.14)

and, finally, the slip condition

$$\begin{aligned}&\!\!\!k\hbox {e}^{kh_1^0}u_{11}+(kh_1^0+1)\hbox {e}^{kh_1^0}u_{12} -k\hbox {e}^{-kh_1^0}u_{13}-(kh_1^0-1)\hbox {e}^{-kh_1^0}u_{14} \nonumber \\&+\,k(2b_*k-1)\hbox {e}^{kh_1^0}u_{21}+(kh_1^0+1) (2b_*k-1)\hbox {e}^{kh_1^0}u_{22}\nonumber \\&+\,k(2b_*k+1)\hbox {e}^{-kh_1^0}u_{23}+(kh_1^0-1) (2b_*k+1)\hbox {e}^{-kh_1^0}u_{24}=0, \end{aligned}$$
(7.15)

where \(b_*=(1+\mu _2/\mu _1){b_1}\). For the solution of this algebraic system we use the remaining boundary conditions, namely the normal stress conditions at \(z=h_2\)

$$\begin{aligned} {\mathrm {i}}\mu _2[2k^2\hbox {e}^{kh_2^0}u_{21}+2k^2h_2^0\hbox {e}^{kh_2^0}u_{22} -2k^2\hbox {e}^{-kh_2^0}u_{23}-2k^2h_2^0\hbox {e}^{-kh_2^0}u_{24}] = \sigma _2 k^2+(1-\chi )\left. \phi ^{\prime \prime }\right| _{h^0}, \end{aligned}$$
(7.16)

and at \(z=h_1\)

$$\begin{aligned}&\!\!\!\hbox {i}\mu _1[2k^2\hbox {e}^{kh_1^0}u_{11}+2k^2h_1^0\hbox {e}^{kh_1^0} u_{12}-2k^2\hbox {e}^{-kh_1^0}u_{13}-2k^2h_1^0\hbox {e}^{-kh_1^0}u_{14}] \nonumber \\&-\,\hbox {i}\mu _2[2k^2\hbox {e}^{kh_1^0}u_{21}+2k^2h_1^0\hbox {e}^{kh_1^0}u_{22} -2k^2\hbox {e}^{-kh_1^0}u_{23}-2k^2h_1^0\hbox {e}^{-kh_1^0}u_{24}] =\sigma _1 \chi k^2-(1-\chi )\left. \phi ^{\prime \prime }\right| _{h^0}. \end{aligned}$$
(7.17)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jachalski, S., Peschka, D., Münch, A. et al. Impact of interfacial slip on the stability of liquid two-layer polymer films. J Eng Math 86, 9–29 (2014). https://doi.org/10.1007/s10665-013-9651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-013-9651-8

Keywords

Navigation