Skip to main content
Log in

Electrified film flow over step topography at zero Reynolds number: an analytical and computational study

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The flow of a liquid film over step topography under the influence of an electric field is considered in the limit of zero Reynolds number. The particular topographies considered include a flat wall with a downward step or an upward step, or a flat wall which is indented with a rectangular trench. A uniform electric field is imposed at infinity in the direction normal to the flat wall. The air above the film is treated as a perfect dielectric. The liquid in the film is assumed to behave either as a perfect conductor or as a perfect dielectric whose dielectric constant in general differs from that in the air. Asymptotic results are derived on the assumption of small step height, and formulas are presented for the first-order correction to the free-surface deformation due to the topography. It is demonstrated that, in an appropriate long-wave limit, the solutions approach those obtained using the lubrication approximation. Finally, the small-step asymptotics are favourably compared with numerical solutions for Stokes flow over steps of arbitrary height computed using the boundary-element method. In summary, it is shown that asymptotic models based on small-amplitude step topography provide simple formulas which are effective in describing the flow even for moderate step amplitudes, making them an efficient analytical tool for solving practical film-flow problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peurrung LM, Graves DB (1993) Spin coating over topography. IEEE Trans Semicond Manuf 6: 72–76

    Article  Google Scholar 

  2. Stillwagon LE, Larson RG (1988) Fundamentals of topographic substrate leveling. J Appl Phys 63: 5251–5258

    Article  ADS  Google Scholar 

  3. Stillwagon LE, Larson RG (1990) Leveling of thin films over uneven substrates during spin coating. Phys Fluids A 2: 1937–1944

    Article  ADS  Google Scholar 

  4. Yoshimura PN, Nosoko T, Nagata T (1996) Enhancement of mass transfer into a falling laminar liquid film by two-dimensional surface waves—some experimental observations and modeling. Chem Eng Sci 51: 1231–1240

    Article  Google Scholar 

  5. Serifi K, Malamataris NA, Bontozoglou V (2004) Transient flow and heat transfer phenomena in inclined wavy films. Int J Therm Sci 43: 761–767

    Article  Google Scholar 

  6. Argyriadi K, Vlachogiannis M, Bontozoglou V (2006) Experimental study of inclined film flow along periodic corrugations: the effect of wall steepness. Phys Fluids 18: 012102

    Article  ADS  Google Scholar 

  7. Bielarz C, Kalliadasis S (2003) Time-dependent free-surface thin film flows over topography. Phys Fluids 15: 2512–2524

    Article  MathSciNet  ADS  Google Scholar 

  8. Decré MMJ, Baret JC (2003) Gravity-driven flows of viscous liquids over two-dimensional topographies. J Fluid Mech 487: 147–166

    Article  MATH  ADS  Google Scholar 

  9. Fernandez-Parent C, Lammers JH, Decré MMJ (1998) Flow of a gravity driven thin liquid film over one-dimensional topographies. Phillips research unclassified report no. UR 823/28

  10. Gramlich CM, Mazouchi A, Homsy GM (2004) Time-dependent free surface Stokes flow with a moving contact line. II. Flow over wedges and trenches. Phys Fluids 16: 1660–1667

    Article  MathSciNet  ADS  Google Scholar 

  11. Kalliadasis S, Bielarz C, Homsy GM (2000) Steady free-surface thin film flows over topography. Phys Fluids 12: 1889–1898

    Article  MathSciNet  ADS  Google Scholar 

  12. Mazouchi A, Homsy GM (2001) Free surface Stokes flow over topography. Phys Fluids 13: 2751–2761

    Article  ADS  Google Scholar 

  13. Wierschem A, Aksel N (2004) Influence of inertia on eddies created in films creeping over strongly undulated substrates. Phys Fluids 16: 4566–4574

    Article  ADS  Google Scholar 

  14. Schäffer E, Thurn-Albrecht T, Russell TP, Steiner U (2000) Electrically induced structure formation and pattern transfer. Nature 403: 874–877

    Article  ADS  Google Scholar 

  15. Taylor GI, McEwan AD (1965) The stability of a horizontal fluid interface in a vertical electric field. J Fluid Mech 22: 1–15

    Article  MATH  ADS  Google Scholar 

  16. Melcher JR, Warren EP (1966) Continuum feedback control of Rayleigh–Taylor type instability. Phys Fluids 11: 2085–2094

    Article  ADS  Google Scholar 

  17. Melcher JR, Smith CV (1969) Electrohydrodynamic charge relaxation and interfacial perpendicular-field instability. Phys Fluids 12: 778–790

    Article  ADS  Google Scholar 

  18. Kapitza PL, Kapitza SP (1949) Wave flow of thin fluid layers of liquids. Zh Eksp Teor Fiz 19: 105–120

    Google Scholar 

  19. Chang HC, Demekhin EA (2002) Complex wave dynamics on thin films. Elsevier, Amsterdam

    Google Scholar 

  20. Tseluiko D, Papageorgiou DT (2006) Wave evolution on electrified falling films. J Fluid Mech 556: 361–386

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Higdon JJL (1985) Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavities. J Fluid Mech 159: 195–226

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Pozrikidis C (1988) The flow of a liquid film along a periodic wall. J Fluid Mech 188: 275–300

    Article  MATH  ADS  Google Scholar 

  23. Pozrikidis C (2003) Effect of surfactants on film flow down a periodic wall. J Fluid Mech 496: 105–127

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Tseluiko D, Blyth MG, Papageorgiou DT, Vanden-Broeck JM (2008) Electrified viscous thin film flow over topography. J Fluid Mech 597: 449–475

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Tseluiko D, Blyth MG, Papageorgiou DT, Vanden-Broeck JM (2008) Effect of an electric field on film flow down a corrugated wall at zero Reynolds number. Phys Fluids 20: 042103

    Article  ADS  Google Scholar 

  26. Tseluiko D, Blyth MG, Papageorgiou DT, Vanden-Broeck JM (2009) Viscous electrified film flow over step topography. SIAM J Appl Math 70: 845–865

    Article  MATH  MathSciNet  Google Scholar 

  27. Aksel N (2000) Influence of the capillarity on a creeping film flow down an inclined plane with an edge. Arch Appl Mech 70: 81–90

    Article  MATH  ADS  Google Scholar 

  28. Bontozoglou V, Serifi K (2008) Falling film flow along steep two-dimensional topography: the effect of inertia. Int J Multiph Flow 34: 734–747

    Article  Google Scholar 

  29. Gaskell PH, Jimack PK, Sellier M, Thompson HM, Wilson MCT (2004) Gravity-driven flow of continuous thin liquid films on non-porous substrates with topography. J Fluid Mech 509: 253–280

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Tseluiko D, Blyth MG, Papageorgiou DT, Vanden-Broeck JM (2008) Effect of an electric field on film flow down a corrugated wall at zero Reynolds number. Phys Fluids 20: 042103

    Article  ADS  Google Scholar 

  31. Melcher JR, Taylor GI (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu Rev Fluid Mech 1: 111–146

    Article  ADS  Google Scholar 

  32. Jackson JD (1963) Classical electrodynamics. Wiley, New York

    MATH  Google Scholar 

  33. Stakgold I (1979) Green’s functions and boundary value problems. Wiley, New York

    MATH  Google Scholar 

  34. Katznelson Y (1976) An introduction to harmonic analysis. Dover, New York

    MATH  Google Scholar 

  35. Scholle M, Aksel N (2007) A general free surface rule for Stokes flow of fluid films over obstacles. Acta Mech 191: 155–159

    Article  MATH  Google Scholar 

  36. Griffing EM, Bankoff SG, Miksis MJ, Schluter RA (2006) Electrohydrodynamics of thin flowing films. J Fluids Eng 128: 276–283

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tseluiko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseluiko, D., Blyth, M.G., Papageorgiou, D.T. et al. Electrified film flow over step topography at zero Reynolds number: an analytical and computational study. J Eng Math 69, 169–183 (2011). https://doi.org/10.1007/s10665-009-9348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9348-1

Keywords

Navigation