Skip to main content
Log in

Thin-film rupture for large slip

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The rupture of thin liquid films on hydrophobic substrates, assuming large slip at the liquid-solid interface, is studied using a recently developed strong slip lubrication model, it is shown that the rupture passes through up to three self-similar regimes with different dominant balances and different scaling exponents. For one of these regimes the similarity is of second kind, and the similarity exponent is determined by solving a boundary-value problem for a nonlinear ODE. Furthermore, finite-time rupture is proved for this regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Constantin P, Dupont TF, Goldstein RE, Kadanoff LP, Shelley MJ, Zhou S-M (1993) Droplet breakup in a model of the Hele-Shaw cell. Phys Rev E 47: 4169–4181

    Article  MathSciNet  ADS  Google Scholar 

  2. Zhang WW, Lister JR (1999) Similarity solutions for van der Waals rupture of a thin film on a solid substrate. Phys Fluids 11: 2454–2462

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Erneux T, Davis SH (1993) Nonlinear rupture of free films. Phys Fluids A 5: 1117–1122

    Article  MATH  ADS  Google Scholar 

  4. Ida MP, Miksis MJ (1996) Thin film rupture. Appl Math Lett 9: 35–40

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertozzi AL, Brenner MP, Dupont TF, Kadanoff LP (1994) Singularities and similarities in interface flows. In: L. Sirovich (ed) Trends and perspectives in applied mathematics. Appl Math Sci 100:155–208. Springer, New York

  6. Vaynblat D, Lister JR, Witelski TP (2001) Symmetry and self-similarity in rupture and pinchoff: a geometric bifurcation. Eur J Appl Math 12: 209–232

    Article  MATH  MathSciNet  Google Scholar 

  7. Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69: 931–980

    Article  ADS  Google Scholar 

  8. Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69: 865–930

    Article  ADS  Google Scholar 

  9. Eggers J (1993) Universal pinching of 3D axisymmetric free-surface flow. Phys Rev Lett 71: 3458–3460

    Article  ADS  Google Scholar 

  10. Papageorgiou DT (1995) On the breakup of viscous liquid threads. Phys Fluids 7: 1529–1544

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Brenner MP, Lister JR, Stone HA (1996) Pinching threads, singularities and the number 0.0304 . . .. Phys Fluids 8: 2827–2836

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Witelski TP, Bernoff AJ (1999) Stability of self-similar solutions for van der Waals driven thin film rupture. Phys Fluids 11: 2443–2445

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Witelski TP, Bernoff AJ (2000) Dynamics of three-dimensional thin film rupture. Physica D 147: 155–176

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Renardy M (2001) Finite time breakup of viscous filaments Z Angew Math Phys 52:881–887; (2007) Corrigendum for “Finite time breakup of viscous filaments. Z Angew Math Phys 58:904–905

    Google Scholar 

  15. Becker J, Grün G, Seemann R, Mantz H, Jacobs K, Mecke KR, Blossey R (2003) Complex dewetting scenarios captures by thin film models. Nat Mater 2: 59–63

    Article  ADS  Google Scholar 

  16. Reiter G (1992) Dewetting of thin polymer films. Phys Rev Lett 68: 75–78

    Article  MathSciNet  ADS  Google Scholar 

  17. Redon C, Brzoska JB, Brochard-Wyart F (1994) Dewetting and slippage of microscopic polymer films. Macromolecules 27: 468–471

    Article  ADS  Google Scholar 

  18. Reiter G, Sharma A (2001) Auto-optimization of dewetting rates by rim instabilities in slipping polymer films. Phys Rev Lett 80: 166103

    Article  ADS  Google Scholar 

  19. Fetzer R, Jacobs K, Münch A, Wagner B, Witelski TP (2005) New slip regimes and the shape of dewetting thin liquid films. Phys Rev Lett 95: 127801

    Article  ADS  Google Scholar 

  20. Kargupta K, Sharma A, Khanna R (2004) Instability, dynamics and morphology of thin slipping films. Langmuir 20: 244–253

    Article  Google Scholar 

  21. Münch A, Wagner B, Witelski TP (2005) Lubrication models with small to large slip lengths. J Eng Math 53: 359–383

    Article  MATH  Google Scholar 

  22. Münch A (2005) Dewetting rates of thin liquid films. J Phys Condens Matter 17: S309–S318

    Article  Google Scholar 

  23. Münch A, Wagner B (2005) Contact-line instability of dewetting thin films. Physica D 209: 178–190

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Kitavtsev G, Wagner B, Recke L (2008) Coarsening dynamics of slipping droplets. J Eng Math. doi:10.1007/s10665-009-9313-z

  25. Lauga E, Brenner MP, Stone HA (2007) Microfluidics: the no-slip boundary condition. In: Tropea C, Yarin A, Foss JF (eds) Handbook of experimental fluid dynamics Springer, Chapter 19, pp 1219–1240

  26. Vaynblat D, Lister JR, Witelski TP (2001) Rupture of thin viscous films by van der Waals forces: evolution and self-similarity. Phys Fluids 13: 1130–1140

    Article  ADS  Google Scholar 

  27. Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics, volume 14 of Cambridge texts in applied mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  28. Giron B, Meerson B, Sasorov PV (1998) Weak selection and stability of localized distributions in Ostwald ripening. Phys Rev E 58: 4213–4216

    Article  ADS  Google Scholar 

  29. Niethammer B, Pego RL (1999) Non-self-similar behavior in the LSW theory of Ostwald ripening. J Stat Phys 95: 867–902

    Article  MATH  MathSciNet  Google Scholar 

  30. Peschka D, Niethammer B, Münch A (2008) Self-similar rupture of viscous thin films in the strong-slip regime. Nonlinearity (to appear)

  31. Peschka D (2008) Self-similar rupture of thin liquid films with slippage. PhD Thesis, Institute for Mathematics, Humboldt University Berlin

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Münch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peschka, D., Münch, A. & Niethammer, B. Thin-film rupture for large slip. J Eng Math 66, 33–51 (2010). https://doi.org/10.1007/s10665-009-9342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9342-7

Keywords

Navigation