Skip to main content
Log in

Free-surface stability of a damped thin-film flow

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

An idealized model is presented, describing the flow of a thin film through a dilute porous layer of immobile obstacles. Damping due to the obstacles extends the linear stability of the flow, where the depth-integrated flowrates retrieved at each order of the film expansion are expressed in terms of hyperbolic functions. Three- dimensional numerical simulations reveal a transition from steepening waves to stationary travelling waves for increasing values of the damping parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Li W-L, Wang CC (1999) Derivation of the modified molecular gas lubrication equation—a porous media model. J Phys D Appl Phys 32: 1421–1427

    Article  ADS  Google Scholar 

  2. Lin J-R, Lu R-F, Yang C-B (2001) Derivation of porous squeeze-film Reynolds equations using the Brinkman model and its application. J Phys D Appl Phys 34: 3217–3223

    Article  ADS  Google Scholar 

  3. Devauchelle O, Josserand C, Zaleski S (2007) Forced dewetting on porous media. J Fluid Mech 574: 343–364

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Chen M-D, Chang K-M, Lin J-W, Li W-L (2002) Lubrication of journal bearings—influence of stress jump condition at the porous-media/fluid film interface. Tribol Int 35: 287–295

    Google Scholar 

  5. Myers T (2002) Modelling laminar sheet flow over rough surfaces. Water Resour Res 38: 1230–1242

    Article  ADS  Google Scholar 

  6. Myers T (2003) Unsteady laminar flow over a rough surface. J Eng Math 46: 111–126

    Article  MATH  Google Scholar 

  7. Anderson JL, McKenzie PF, Webber RM (1991) Model for hydrodynamic thickness of thin polymer layers at solid/liquid interfaces. Langmuir 7: 162–166

    Article  Google Scholar 

  8. Yang R, Jou D (1995) Heat and mass transfer of absorption process for the falling film flow inside a porous medium. Int J Heat Mass Transf 38: 1121–1126

    Article  Google Scholar 

  9. Yang R, Jou D (2001) The effect of non-absorbable gas on an absorption process for the falling film flow inside a porous medium. Int J Heat Mass Transf 44: 1259–1266

    Article  MATH  Google Scholar 

  10. Hayes M, O’Brien SGB, Lammers JH (2000) Green’s function for steady flow over a small two-dimensional topography. Phys Fluids 12: 2845–2858

    Article  ADS  MathSciNet  Google Scholar 

  11. Gaskell PH, Jimack PK, Selleir M, Thompson HM, Wilson MCT (2004) Gravity-driven flow of continuous thin liquid films on non-porous substrates with topography. J Fluid Mech 509: 253–280

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Kondic L, Diez J (2004) Instabilities in the flow of thin films on heterogeneous surfaces. Phys Fluids 16: 3341–3360

    Article  ADS  MathSciNet  Google Scholar 

  13. Tachie MF, James DF, Curry IG (2003) Velocity measurements of a shear flow penetrating a porous medium. J Fluid Mech 493: 319–343

    Article  MATH  ADS  Google Scholar 

  14. James DF, Davis AMJ (2001) Flow at the interface of a model fibrous medium. J Fluid Mech 426: 47–72

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Brinkman HC (1947) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res A 1: 27–34

    Article  Google Scholar 

  16. Goyeau B, Lhuillier D, Gobin D, Velarde MG (2003) Momentum transport at a fluid-porous interface. Int J Heat Mass Transf 46: 4071–4081

    Article  MATH  Google Scholar 

  17. Deng C, Martinez DM (2005) Linear stability of Berman flow in a channel partially filled with a porous medium. Phys Fluids 17: 024102-1–024102-8

    Article  ADS  Google Scholar 

  18. Desaive Th, Lebon G, Hennenberg M (2001) Coupled capillary and gravity-driven instability in a liquid film overlying a porous layer. Phys Rev E 64: 066304-1–066304-8

    Article  ADS  Google Scholar 

  19. Nield DA, Bejan A (1998) Convection in porous media. Springer, New York

    Google Scholar 

  20. Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69: 931–980

    Article  ADS  Google Scholar 

  21. Nield DA (1991) The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Int J Heat Fluid Flow 12: 269–272

    Article  Google Scholar 

  22. Scheid B, Ruyer-Quil C, Thiele U, Kabov O, Legros JC, Colinet P (2005) Validity domain of the Benney equation including Marangoni effect for closed and open flows. J Fluid Mech 527: 303–335

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Colinet P, Kaya H, Rossomme S, Scheid B (2007) Some advances in lubrication-type theories. Eur Phys J Spec Top 146: 377–389

    Article  Google Scholar 

  24. Ruyer-Quil C, Manneville P (1998) Modeling film flows down inclined planes. Eur Phys J B 6: 277–292

    Article  ADS  Google Scholar 

  25. Witelski TP, Bowen M (2003) ADI schemes for higher-order nonlinear diffusion equations. Appl Num Math 45: 331–351

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Molenaar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molenaar, D. Free-surface stability of a damped thin-film flow. J Eng Math 65, 221–228 (2009). https://doi.org/10.1007/s10665-009-9306-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9306-y

Keywords

Navigation