Skip to main content

Advertisement

Log in

Soil erosion vulnerability and soil loss estimation for Siran River watershed, Pakistan: an integrated GIS and remote sensing approach

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil erosion is a problematic issue with detrimental effects on agriculture and water resources, particularly in countries like Pakistan that heavily rely on farming. The condition of major reservoirs, such as Tarbela, Mangla, and Warsak, is crucial for ensuring an adequate water supply for agriculture in Pakistan. The Kunhar and Siran rivers flow practically parallel, and the environment surrounding both rivers’ basins is nearly identical. The Kunhar River is one of KP’s dirtiest rivers that carries 0.1 million tons of suspended sediment to the Mangla reservoir. In contrast, the Siran River basin is largely unexplored. Therefore, this study focuses on the Siran River basin in the district of Manshera, Pakistan, aiming to assess annual soil loss and identify erosion-prone regions. Siran River average annual total soil loss million tons/year is 0.154. To achieve this, the researchers integrate Geographical Information System (GIS) and remote sensing (RS) data with the Revised Universal Soil Loss Equation (RUSLE) model. Five key variables, rainfall, land use land cover (LULC), slope, soil types, and crop management, were examined to estimate the soil loss. The findings indicate diverse soil loss causes, and the basin’s northern parts experience significant soil erosion. The study estimated that annual soil loss from the Siran River basin is 0.154 million tons with an average rate of 0.871 tons per hectare per year. RUSLE model combined with GIS/RS is an efficient technique for calculating soil loss and identifying erosion-prone areas. Stakeholders such as policymakers, farmers, and conservationists can utilize this information to target efforts and reduce soil loss in specific areas. Overall, the study’s results have the potential to advance initiatives aimed at safeguarding the Siran River watershed and its vital resources. Protecting soil resources and ensuring adequate water supplies are crucial for sustainable agriculture and economic development in Pakistan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data used in this study are available on request from the corresponding author.

References

  • Ahmad, M., Jadoon, M. A., Ahmad, I., & Khan, H. (2007). Impact of trainings imparted to enhance agricultural production in district Mansehra. Sarhad Journal of Agriculture, 23(4), 1211.

    Google Scholar 

  • Angulo-Martínez, M., & Beguería, S. (2009). Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain). Journal of Hydrology, 379, 111–121. https://doi.org/10.1016/j.jhydrol.2009.09.051

    Article  Google Scholar 

  • Akça, E., Büyük, G., İnan, M., & Kırpık, M. (2022). Sustainable management of land degradation through legume-based cropping system. In Advances in legumes for sustainable intensification (pp. 267-280). Academic Press. https://doi.org/10.1016/B978-0-323-85797-0.00029-X

    Book  Google Scholar 

  • Arabameri, A., Pradhan, B., Pourghasemi, H. R., & Rezaei, K. (2018). Identification of erosion-prone areas using different multi-criteria decision-making techniques and GIS. Geomatics, Natural Hazards and Risk, 9, 1129–1155. https://doi.org/10.1080/19475705.2018.1513084

    Article  Google Scholar 

  • Arif, A. M., Hameed, A., & Anwar, A. (2022). Problems faced by visitors in Pakistan: A case study of Kaghan Valley, Mansehra (pp. 74–82). Global Political Review, VII(1). https://doi.org/10.31703/gpr.2022(VII-I).08

    Book  Google Scholar 

  • Ashraf, A., Abuzar, M. K., Ahmad, B., Ahmad, M. M., & Hussain, Q. (2017). Modeling risk of soil erosion in high and medium rainfall zones of Pothwar Region, Pakistan: Assessment of soil erosion risk. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 54, 67–77.

    Google Scholar 

  • Aslam, B., Maqsoom, A., Alaloul, W. S., Musarat, M. A., Jabbar, T., & Zafar, A. (2021). Soil erosion susceptibility mapping using a GIS-based multi-criteria decision approach: Case of district Chitral, Pakistan. Ain Shams Engineering Journal, 12, 1637–1649. https://doi.org/10.1016/j.asej.2020.09.015

    Article  Google Scholar 

  • Awan, R. S., Khan, A., Liu, C., Yang, S., Zang, Q., Wu, Y., & Ali, S. (2021). Subsurface geological model of sedimentary and metasedimentary wedge from Mansehra to Battal based on gravity data, Hazara area, Pakistan. Energy Geoscience, 2, 229–237. https://doi.org/10.1016/j.engeos.2021.06.004

    Article  Google Scholar 

  • Bag, R., Mondal, I., Dehbozorgi, M., Bank SP, Das, D. N., Bandyopadhyay, J., Pham, Q. B., Al-Quraishi, A. M. F., & Nguyen, X. C. (2022). Modelling and mapping of soil erosion susceptibility using machine learning in a tropical hot sub-humid environment. Journal of Cleaner Production, 364, 132428. https://doi.org/10.1016/j.jclepro.2022.132428

    Article  Google Scholar 

  • Batool, S., Shirazi, S. A., & Mahmood, S. A. (2021). Appraisal of soil erosion through RUSLE model and hypsometry in Chakwal Watershed (Potwar-Pakistan). Sarhad Journal of Agriculture, 37, 594–606. https://doi.org/10.17582/journal.sja/2021/37.2.594.606

    Article  Google Scholar 

  • Biswas, S. S., & Pani, P. (2015). Estimation of soil erosion using RUSLE and GIS techniques: A case study of Barakar River basin, Jharkhand, India. Modeling Earth Systems and Environment, 1, 1–13. https://doi.org/10.1007/s40808-015-0040-3

    Article  Google Scholar 

  • Butt, M. J., Mahmood, R., & Waqas, A. (2011). Sediments deposition due to soil erosion in the watershed region of Mangla Dam. Environmental Monitoring and Assessment, 181, 419–429. https://doi.org/10.1007/s10661-010-1838-0

    Article  Google Scholar 

  • Cardoso, D. P., Silva, E. M., Avanzi, J. C., Muniz, J. A., Ferreira, D. F., Silva, M. L. N., & Curi, N. (2020). Rainfall erosivity factor: An R package for rainfall erosivity (R-factor) determination. Catena, 189, 104509. https://doi.org/10.1016/j.catena.2020.104509

    Article  Google Scholar 

  • Chauhan, N., Kumar, V., Paliwal, R., & Kakkar, R. (2020). Quantifying the risks of soil erosion using Revised Universal Soil Loss Equation (RUSLE) and GIS technology for Ghaggar River Basin–A case of Lower Shivaliks. Mukt Shabd Journal, 9, 221–232.

    Google Scholar 

  • Chen, Y., Duan, X., Zhang, G., Ding, M., & Lu, S. (2022). Rainfall erosivity estimation over the Tibetan plateau based on high spatial-temporal resolution rainfall records. International Soil and Water Conservation Research, 10, 422–432. https://doi.org/10.1016/j.iswcr.2022.01.004

    Article  Google Scholar 

  • Cherif, K., Yahia, N., Bilal, B., & Bilal, B. (2023). Erosion potential model-based ANN-MLP for the spatiotemporal modeling of soil erosion in wadi Saida watershed. Modeling Earth Systems and Environment, 1–23. https://doi.org/10.1007/s40808-022-01657-3

  • Chuenchum, P., Xu, M., & Tang, W. (2020). Predicted trends of soil erosion and sediment yield from future land use and climate change scenarios in the Lancang–Mekong River by using the modified RUSLE model. International Soil and Water Conservation Research, 8, 213–227. https://doi.org/10.1016/j.iswcr.2020.06.006

    Article  Google Scholar 

  • Chung, H. Y., Jung, J., Lee, D. H., Kim, S., Lee, M. K., Lee, J. I., & Kim, K. (2020). Chemical weathering of granite in ice and its implication for weathering in polar regions. Minerals, 10, 185. https://doi.org/10.3390/min10020185

    Article  CAS  Google Scholar 

  • Das BM (2021) Principles of geotechnical engineering. Cengage Learning.

  • Ebabu, K., Tsunekawa, A., Haregeweyn, N., Tsubo, M., Adgo, E., Fenta, A. A., & Poesen, J. (2022). Global analysis of cover management and support practice factors that control soil erosion and conservation. International Soil and Water Conservation Research, 10, 161–176. https://doi.org/10.1016/j.iswcr.2021.12.002

    Article  Google Scholar 

  • Eckstein, D., Künzel, V., Schäfer, L., & Winges, M. (2019). Global climate risk index 2020 (pp. 1–50). Germanwatch, Bonn, Germany.

  • Egbueri, J. C., Igwe, O., & Ifediegwu, S. I. (2022). Erosion risk mapping of Anambra State in southeastern Nigeria: Soil loss estimation by RUSLE model and geoinformatics. Bulletin of Engineering Geology and the Environment, 81, 91. https://doi.org/10.1007/s10064-022-02589-z

    Article  Google Scholar 

  • Erdogan, H. E., Erpul, G., & Bayramin, I. (2006). Use of USLE/GIS methodology for predicting soil loss in a semi-arid agricultural watershed. Department of Soil Science, University of Ankara.

    Google Scholar 

  • Erenstein, O. C. (1999). The economics of soil conservation in developing countries: The case of crop residue mulching. Wageningen University and Research.

    Google Scholar 

  • Fadhil, A. M. (2013). Sand dunes monitoring using remote sensing and GIS techniques for some sites in Iraq. In PIAGENG 2013: Intelligent information, control, and communication technology for agricultural engineering (pp. 28-36) (p. SPIE). https://doi.org/10.1117/12.2019735

    Chapter  Google Scholar 

  • Gayen, A., Saha, S., & Pourghasemi, H. R. (2020). Soil erosion assessment using RUSLE model and its validation by FR probability model. Geocarto International, 35, 1750–1768. https://doi.org/10.1080/10106049.2019.1581272

    Article  Google Scholar 

  • Gelagay, H. S., & Minale, A. S. (2016). Soil loss estimation using GIS and remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. International Soil and Water Conservation Research, 4, 126–136. https://doi.org/10.1016/j.iswcr.2016.01.002

    Article  Google Scholar 

  • Ghosal, K., & Das, B. S. (2020). A review of RUSLE model. Journal of the Indian Society of Remote Sensing, 48, 689–707. https://doi.org/10.1007/s12524-019-01097-0

    Article  Google Scholar 

  • Gilani, H., Ahmad, A., Younes, I., & Abbas, S. (2021). Estimation of annual soil erosion dynamics (2005-2015) in Pakistan using Revised Universal Soil Loss Equation (RUSLE). Authorea Preprints. https://doi.org/10.22541/au.160946369.92099648/v1

    Book  Google Scholar 

  • Gilani, H., Ahmad, A., Younes, I., & Abbas, S. (2022). Impact assessment of land cover and land use changes on soil erosion changes (2005–2015) in Pakistan. Land Degradation and Development, 33, 204–217. https://doi.org/10.1002/ldr.4138

    Article  Google Scholar 

  • Habtu, W., & Jayappa, K. S. (2022). Assessment of soil erosion extent using RUSLE model integrated with GIS and RS: The case of Megech-Dirma watershed, Northwest Ethiopia. Environ Monit Assess, 194, 318. https://doi.org/10.1007/s10661-022-09965-y

    Article  CAS  Google Scholar 

  • Hossini, H., Karimi, H., Mustafa, Y. T., & Al-Quraishi, A. M. F. (2022). Role of effective factors on soil erosion and land degradation: A review. Environmental Degradation in Asia: Land Degradation, Environmental Contamination, and Human Activities, 221–235. https://doi.org/10.1007/978-3-031-12112-8_11

  • Hurni, H. (1985). Soil conservation manual for Ethiopia. Ministry of Agriculture.

    Google Scholar 

  • Hoyos, N. (2005). Spatial modeling of soil erosion potential in a tropical watershed of the Colombian Andes. Catena, 63, 85–108. https://doi.org/10.1016/j.catena.2005.05.012

    Article  Google Scholar 

  • Inam, S. (2021). Effect of tourism on small business in Lulusar-Dudipat National Park (LDNP) Kaghan Valley, District Mansehra: A comparative study. International Journal of Business and Management Sciences, 2(2), 57–67. https://www.ijbms.org/index.php/ijbms/article/view/53. Accessed 20 May 2023.

    Google Scholar 

  • Jadhao, V. G., Pandey, A., & Mishra, S. K. (2023). Modeling of rain erosivity employing simulated rainfall and laser precipitation monitor. Modeling Earth Systems and Environment, 1–16. https://doi.org/10.1007/s40808-023-01727-0

  • Kalhoro, N. A., He, Z., Li, L., Xu, D., Jun, W., Zeb, A., & Khaskheli, N. (2021). Spatial and temporal variations of hydrodynamics and sediment dynamics in Indus River Estuary, Pakistan. Global Nest Journal, 23, 572–580. https://doi.org/10.30955/gnj.003333

    Article  Google Scholar 

  • Karydas, C., Bouarour, O., & Zdruli, P. (2020). Mapping spatio-temporal soil erosion patterns in the Candelaro River Basin, Italy, using the G2 model with Sentinel2 imagery. Geosciences, 10, 89. https://doi.org/10.3390/geosciences10030089

    Article  Google Scholar 

  • Kayet, N., Pathak, K., Chakrabarty, A., & Sahoo, S. (2018). Evaluation of soil loss estimation using the RUSLE model and SCS-CN method in hillslope mining areas. International Soil and Water Conservation Research, 6, 31–42. https://doi.org/10.1016/j.iswcr.2017.11.002

    Article  Google Scholar 

  • Khan, A. (2021). Quantification of soil erosion by integrating geospatial and Revised Universal Soil Loss Equation in District Dir Lower, Pakistan: Soil erosion estimation using RUSLE model. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 58, 17–28. https://doi.org/10.53560/PPASB(58-4)678

    Article  Google Scholar 

  • Khwaja, M. A., Saeed, S., & Urooj, M. (2018). Preliminary environmental impact assessment (EIA) study of China-Pakistan economic corridor (CPEC) northern route road construction activities in Khyber Pakhtunkhwa (KPK), Pakistan. SDPI, Pakistan.

  • Kim, S. M., Choi, Y., Suh, J., Oh, S., Park, H. D., & Yoon, S. H. (2012). Estimation of soil erosion and sediment yield from mine tailing dumps using GIS: A case study at the Samgwang mine, Korea. Geosystem Engineering, 15, 2–9. https://doi.org/10.1080/12269328.2012.674426

    Article  Google Scholar 

  • Koirala, P., Thakuri, S., Joshi, S., & Chauhan, R. (2019). Estimation of soil erosion in Nepal using a RUSLE modeling and geospatial tool. Geosciences, 9, 147. https://doi.org/10.3390/geosciences9040147

    Article  CAS  Google Scholar 

  • Lal, R. (2001). Soil degradation by erosion. Land Degradation & Development, 12(6), 519–539. https://doi.org/10.1002/ldr.472

    Article  Google Scholar 

  • Lal, R. (2003). Soil erosion and the global carbon budget. Environment international, 29(4), 437–450. https://doi.org/10.1016/S0160-4120(02)00192-7

    Article  CAS  Google Scholar 

  • Li, Z., & Fang, H. (2016). Impacts of climate change on water erosion: A review. Earth-Science Reviews, 163, 94–117. https://doi.org/10.1016/j.earscirev.2016.10.004

    Article  Google Scholar 

  • Li, L., Zhu, W., Liu, J., Zhang, L., Zhu, L., Wang, L., & Gurung, S. B. (2022). Study on multidimensional changes of rainfall erosivity during 1970–2017 in the North–South Transition Zone, China. Frontiers in Environmental Science, 10, 2164. https://doi.org/10.3389/fenvs.2022.969522

    Article  Google Scholar 

  • Liou, Y. A., Nguyen, Q. V., Hoang, D. V., & Tran, D. P. (2022). Prediction of soil erosion and sediment transport in a mountainous basin of Taiwan. Progress in Earth and Planetary Science, 9, 1–15. https://doi.org/10.1186/s40645-022-00512-4

    Article  Google Scholar 

  • Luetzenburg, G., Bittner, M. J., Calsamiglia, A., Renschler, C. S., Estrany, J., & Poeppl, R. (2020). Climate and land use change effects on soil erosion in two small agricultural catchment systems Fugnitz–Austria, Can Revull–Spain. Science of the Total Environment, 704, 135389. https://doi.org/10.1016/j.scitotenv.2019.135389

    Article  CAS  Google Scholar 

  • Mahala, A. (2020). Land degradation processes of Silabati river basin, West Bengal, India: A physical perspective. In R. B. Singh, M. D. Pant & J. L. Raj (Eds.), Gully Erosion Studies from India and Surrounding Regions (pp. 299–313). Cham: Springer International Publishing.

  • Maqsoom, A., Aslam, B., Hassan, U., Kazmi, Z. A., Sodangi, M., Tufail, R. F., & Farooq, D. (2020). Geospatial assessment of soil erosion intensity and sediment yield using the revised universal soil loss equation (RUSLE) model. ISPRS International Journal of Geo-Information, 9, 356. https://doi.org/10.3390/ijgi9060356

    Article  Google Scholar 

  • Maurya, N. K., & Tanwar, P. S. (2021). Estimation of temporal R-factor based on monthly precipitation data. In Journal of Physics: Conference Series Vol. 2070, No. 1, p. 012210. IOP Publishing. https://doi.org/10.1088/1742-6596/2070/1/012210

    Chapter  Google Scholar 

  • Meadows, M. E. (2003). Soil erosion in the Swartland, Western Cape Province, South Africa: Implications of past and present policy and practice. Environmental Science and Policy, 6, 17–28. https://doi.org/10.1016/S1462-9011(02)00122-3

    Article  Google Scholar 

  • Millington, A. C. (1986). Reconnaissance scale soil erosion mapping using a simple geographic information system in the humid tropics. In J. C. De Blij & T. B. H. W. Abebaw (Eds.), Land Evaluation for Land-Use Planning and Conservation in Sloping Areas (pp. 64–81). ISSS FAO ITC.

  • Mitasova, H., Barton, C. M., Ullah, I., Hofierka, J., & Harmon, R. S. (2013). GIS-based soil erosion modeling. In Remote sensing and GIScience in geomorphology (pp. 228-258). Elsevier Inc.. https://doi.org/10.1016/B978-0-12-374739-6.00052-X

    Book  Google Scholar 

  • Moore, I. D., & Burch, G. J. (1986). Physical basis of the length-slope factor in the universal soil loss equation. Soil Science Society of America Journal, 50, 1294–1298. https://doi.org/10.2136/sssaj1986.03615995005000050042x

    Article  Google Scholar 

  • Morgan, R. P. (2009). Soil erosion and conservation. John Wiley & Sons.

    Google Scholar 

  • Musabbir, M., Islam, A. R. M. T., Rahman, M. S., Pal, S. C., Alam, E., & Mallick, J. (2023). Spatiotemporal variability of rainfall erosivity and its teleconnection with atmospheric circulation in monsoon-driven climate region. Catena, 221, 106762. https://doi.org/10.1016/j.catena.2022.106762

    Article  Google Scholar 

  • Neupane, B. K., Mandal, U. K., Al-Quraishi, A. M. F., Ozdemir, M., & Rai, R. (2023). Environmental threat of soil erosion in the Gwang Khola Watershed, Chure Region of Nepal. Iraqi Geological Journal, 56(1E), 194–206. https://doi.org/10.46717/igj.56.1E.14ms-2023-5-24

    Article  Google Scholar 

  • Obiahu, O. H., & Elias, E. (2020). Effect of land use land cover changes on the rate of soil erosion in the Upper Eyiohia river catchment of Afikpo North Area, Nigeria. Environmental Challenges, 1, 100002. https://doi.org/10.1016/j.envc.2020.100002

    Article  Google Scholar 

  • Osman, K. T., & Osman, K. T. (2014). Soil erosion by water. In R. Lal (Ed.), Soil degradation, conservation and remediation (pp. 69–101). Springer Netherlands.

  • Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik, A., Rousseva, S., & Alewell, C. (2015a). Rainfall erosivity in Europe. Science of the Total Environment, 511, 801–814. https://doi.org/10.1016/j.scitotenv.2015.01.008

    Article  CAS  Google Scholar 

  • Panagos, P., Borrelli, P., & Meusburger, K. (2015b). A new European slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosciences, 5, 117–126. https://doi.org/10.3390/geosciences5020117

    Article  Google Scholar 

  • Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Jae Lim, K., & Ballabio, C. (2017). Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific ReporDts, 7, 4175. https://doi.org/10.1038/s41598-017-04282-8

    Article  CAS  Google Scholar 

  • Park, S., Oh, C., Jeon, S., Jung, H., & Choi, C. (2011). Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation. Journal of Hydrology, 399, 263–273. https://doi.org/10.1016/j.jhydrol.2011.01.004

    Article  Google Scholar 

  • Patriche, C. V., Roșca, B., Pîrnău, R. G., Vasiliniuc, I., & Irimia, L. M. (2023). Simulation of rainfall erosivity dynamics in Romania under climate change scenarios. Sustainability, 15, 1469. https://doi.org/10.3390/su15021469

    Article  Google Scholar 

  • Piacentini, T., Galli, A., Marsala, V., & Miccadei, E. (2018). Analysis of soil erosion induced by heavy rainfall: A case study from the NE Abruzzo Hills Area in Central Italy. Water, 10, 1314. https://doi.org/10.3390/w10101314

    Article  Google Scholar 

  • Pradeep, G. S., Krishnan, M. N., & Vijith, H. (2015). Identification of critical soil erosion prone areas and annual average soil loss in an upland agricultural watershed of Western Ghats, using analytical hierarchy process (AHP) and RUSLE techniques. Arabian Journal of Geosciences, 8, 3697–3711. https://doi.org/10.1007/s12517-014-1460-5

    Article  Google Scholar 

  • Qaisar, M., Shah, M. D., Mahmood, T., Khan, K., Iqbal, T., & Ahmad, N. (2008). Kaghan Valley (Pakistan) earthquakes of February 14, 2004: Source mechanism, intensity distribution and their impact. Journal of Himalayan Earth Sciences, 41, 19–32.

    Google Scholar 

  • Rawat, K. S., & Singh, S. K. (2018). Appraisal of soil conservation capacity using NDVI model-based C factor of RUSLE model for a semi-arid ungauged watershed: A case study. Water Conservation Science and Engineering, 3, 47–58. https://doi.org/10.1007/s41101-018-0042-x

    Article  Google Scholar 

  • Raza, A., Farooqi, A., Javed, A., & Ali, W. (2016). Distribution, enrichment, and source identification of selected heavy metals in surface sediments of the Siran River, Mansehra, Pakistan. Environmental monitoring and assessment, 188, 1–15. https://doi.org/10.1007/s10661-016-5586-7

    Article  CAS  Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1996). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture handbook, 703, 25–28.

    Google Scholar 

  • Sharpley, A. N., Williams, J. R., & (EDS.),. (1990). EPIC erosion/productivity impact calculator: 1 (p. 1768). Bull: Model Documentation. USDA Tech.

    Google Scholar 

  • Shin, G. J. (1999). The analysis of soil erosion analysis in watershed using GIS. Department of Civil Engineering, Gang-won National University, Gangwon-do, South Korea, Ph. D. dissertation.

    Google Scholar 

  • Swarnkar, S., Malini, A., Tripathi, S., & Sinha, R. (2018). Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India. Hydrology and Earth System Sciences, 2471–2485. https://doi.org/10.5194/hess-22-2471-2018

  • Taneez, M., Jamil, S., & Ramzan, M. (2021). Water quality assessment and identification of pollution risk in high-altitude saiful muluk lake, north east, Pakistan. Water, Air, and Soil Pollution, 232, 230. https://doi.org/10.1007/s11270-021-05191-3

    Article  CAS  Google Scholar 

  • Tiruneh, G., & Ayalew, M. (2015). Soil loss estimation using geographic information system in enfraz watershed for soil conservation planning in highlands of Ethiopia. International Journal of Agricultural Research. Innovation and Technology (IJARIT), 5, 21–30. https://doi.org/10.3329/ijarit.v5i2.26265

    Article  Google Scholar 

  • Toubal, A. K., Achite, M., Ouillon, S., & Dehni, A. (2018). Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, North-West of Algeria. Environ Monit Assess, 190, 210. https://doi.org/10.1007/s10661-018-6580-z

    Article  Google Scholar 

  • Ul-Hussan, W., Khurram Shahzad, M., Seidel, F., Costa, A., & Nestmann, F. (2020). Comparative assessment of spatial variability and trends of flows and sediments under the impact of climate change in the Upper Indus Basin. Water, 12, 730. https://doi.org/10.3390/w12030730

    Article  Google Scholar 

  • Ullah, S., Ali, A., Iqbal, M., Javid, M., & Imran, M. (2018). Geospatial assessment of soil erosion intensity and sediment yield: A case study of Potohar Region, Pakistan. Environmental Earth Sciences, 77, 1–13. https://doi.org/10.1007/s12665-018-7867-7

    Article  CAS  Google Scholar 

  • Usowicz, B., Lipiec, J., Łukowski, M., & Słomiński, J. (2021). Improvement of spatial interpolation of precipitation distribution using cokriging incorporating rain-gauge and satellite (SMOS) soil moisture data. Remote Sensing, 13(5), 1039. https://doi.org/10.3390/rs13051039

    Article  Google Scholar 

  • Walling, D. E. (1983). The sediment delivery problem. Journal of Hydrology, 209–237. https://doi.org/10.1016/0022-1694(83)90217-2

  • Wallingford, T. C. I. H. (1998). Tarbela Dam sediment management study (p. 2). Lahore, Pakistan.

    Google Scholar 

  • Wan, W., Liu, Z., Li, B., Fang, H., Wu, H., & Yang, H. (2022). Evaluating soil erosion by introducing crop residue cover and anthropogenic disturbance intensity into cropland C-factor calculation: Novel estimations from a cropland-dominant region of Northeast China. Soil and Tillage Research, 219, 105343. https://doi.org/10.1016/j.still.2022.105343

    Article  Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: A guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration.

    Google Scholar 

  • Wischmeier, W. H., Johnson, C. B., & Cross, B. V. (1971). Soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26, 189–193.

    Google Scholar 

  • Xie, W., Li, X., Jian, W., Yang, Y., Liu, H., Robledo, L. F., & Nie, W. (2021). A novel hybrid method for landslide susceptibility mapping-based geo detector and machine learning cluster: A case of Xiaojin county, China (Vol. 10, p. 93). ISPRS International Journal of Geo-Information. https://doi.org/10.3390/ijgi10020093

    Book  Google Scholar 

  • Yan, F. L., Shi, Z. H., Li, Z. X., & Cai, C. F. (2008). Estimating inter rill soil erosion from aggregate stability of Ultisols in subtropical China. Soil and Tillage Research, 100, 34–41. https://doi.org/10.1016/j.still.2008.04.006

    Article  Google Scholar 

  • Yuliang, Q., & Yun, Q. (2002). Fast soil erosion investigation and dynamic analysis in the loess plateau of China by using information composite technique. Advances in Space Research, 29, 85–88. https://doi.org/10.1016/s0273-1177(01)00633-0

    Article  Google Scholar 

  • Zaidi, A. Z., & Khan, M. (2018). Identifying high potential locations for run-of-the-river hydroelectric power plants using GIS and digital elevation models. Renewable and Sustainable Energy Reviews, 89, 106–116. https://doi.org/10.1016/j.rser.2018.02.025

    Article  Google Scholar 

  • Ziadat, F. M., & Taimeh, A. Y. (2013). Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation and Development, 24, 582–590. https://doi.org/10.1002/ldr.2239

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Geography, University of Peshawar, Department of Geography Islamia College Peshawar, and Department of Petroleum and Mining Engineering, Tishk International University, Erbil, Iraq.

Author information

Authors and Affiliations

Authors

Contributions

Mehwish Mehwish: original draft writing, formal analysis, investigation, and methodology; Muhammad Jamal Nasir; Supervision, writing review, and editing; Abdur Raziq; rewriting some parts, correcting of English, and reviewing the manuscript. Ayad M. Fadhil Al- Quriashi; extensive reviewing, editing and finalizing original draft and Fadhil Ali Ghaib; review manuscript.

Corresponding author

Correspondence to Ayad M. Fadhil Al-Quraishi.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Conflict of interest

The authors confirm no conflict of interest.

Additional information

Recommendation

The Surface Water Hydrology Department of WAPDA operates gauging stations on nearly all of Pakistan’s major rivers. The data from these gauging stations can be utilized to learn more about the suspended sediment load carried by rivers and, eventually, reservoir sedimentation. Additional studies on soil erosion utilizing geospatial technology are needed, to identify areas that are vulnerable to soil erosion so that area-specific remedies can be implemented. Additional research is suggested due to the huge potential for diverse hydrologic, climatological, ecological, and statistical modeling applications in soil erosion investigations. It is recommended that the impact of specific causal components, such as land use, rainfall, and vegetation cover, be investigated at the watershed level.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehwish, M., Nasir, M.J., Raziq, A. et al. Soil erosion vulnerability and soil loss estimation for Siran River watershed, Pakistan: an integrated GIS and remote sensing approach. Environ Monit Assess 196, 104 (2024). https://doi.org/10.1007/s10661-023-12262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12262-x

Keywords

Navigation