Skip to main content

Advertisement

Log in

Estimate of near-surface NO2 concentrations in Fenwei Plain, China, based on TROPOMI data and random forest model

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Nitrogen dioxide (NO2) concentration is a crucial indicator of ground-level air quality, and elevated concentrations can adversely affect human health and the atmospheric environment. In this study, we utilized Tropospheric Monitoring Instrument (TROPOMI) tropospheric NO2 vertical column density data (VCD) and multi-source geographic data to establish a random forest regression (RF) model that accurately estimates NO2 concentrations near the ground in the Fenwei Plain. The model addresses the inherent limitations of traditional ground-based monitoring and provides data support for analyzing regional pollution spatial and temporal characteristics. (1) The RF model based on TROPOMI and geographic data demonstrates high estimation accuracy, with monthly average RF model fit and validation coefficient of determination (R2) reaching 0.949 and 0.875, respectively. (2) A complex nonlinear relationship exists between near-surface NO2 concentration and multi-source geographic data. The RF model’s estimations reveal clear seasonal and regional variations in near-surface NO2 concentration. Concentrations are generally highest in winter, followed by spring and autumn, and lowest in summer. The high NO2 concentrations are primarily mainly distributed in the plains and river valleys with low elevation and dense population density. The model estimation results also indicate that the estimated effect is better when the NO2 concentration fluctuates less and anthropogenic emission reduction measures significantly impact the NO2 concentration near the ground. (3) The population exposure risk results indicate that most cities in the Fenwei Plain face varying exposure risks. These findings offer valuable insights for regional NO2 pollution management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Some of the data used in this study was publicly available at https://www.cnemc.cn/.

References

  • Acharjee, A., Kloosterman, B., Visser, R. G., & Maliepaard, C. (2016). Integration of multi-omics data for pre-diction of phenotypic traits using random forest. BMC Bioinformatics, 17, 363–373.

    Article  Google Scholar 

  • Araki, S., Shima, M., & Yamamoto, K. (2018). Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan. Science of The Total Environment, 634, 1269–1277.

    Article  CAS  Google Scholar 

  • Aunan, K., Ma, Q., Lund, M. T., & Wang, S. (2018). Population-weighted exposure to PM2. 5 pollution in Chi-na: An integrated approach. Environment International, 120, 111–120.

    Article  CAS  Google Scholar 

  • Bechle, M. J., Millet, D. B., & Marshall, J. D. (2013). Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area. Atmospheric Environment, 69, 345–353.

    Article  CAS  Google Scholar 

  • Beirle, S., Platt, U., Wenig, M., & Wagner, T. (2003). Weekly cycle of NO 2 by GOME measurements: A sig-nature of anthropogenic sources. Atmospheric Chemistry and Physics, 3, 2225–2232.

    Article  CAS  Google Scholar 

  • Beloconi, A., & Vounatsou, P. (2020). Bayesian geostatistical modelling of high-resolution NO2 exposure in Europe combining data from monitors, satellites and chemical transport models. Environment International, 138, 105578.

    Article  CAS  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Briggs, D. J., Collins, S., Elliott, P., et al. (1997). Mapping urban air pollution using GIS: A regression-based approach. International Journal of Geographical Information Science, 11, 699–718.

    Article  Google Scholar 

  • Cao, J. J., & Cui, L. (2021). Current status, characteristics and causes of particulate air pollution in the Fen-wei Plain, China: A review. Journal of Geophysical Research: Atmospheres, 126, e2020JD034472.

    Article  CAS  Google Scholar 

  • Chen, R., Huang, W., Wong, C.-M., et al. (2012). Short-term exposure to sulfur dioxide and daily mortality in 17 Chinese cities: the China air pollution and health effects study (CAPES). Environmental Research, 118, 101–106.

    Article  CAS  Google Scholar 

  • Chi, Y., Fan, M., Zhao, C., et al. (2021). Ground-level NO2 concentration estimation based on OMI tropospheric NO2 and its spatiotemporal characteristics in typical regions of China. Atmospheric Research, 264, 105821.

    Article  CAS  Google Scholar 

  • Chiusolo, M., Cadum, E., Stafoggia, M., et al. (2011). Short-term effects of nitrogen dioxide on mortality and susceptibility factors in 10 Italian cities: the EpiAir study. Environmental Health Perspectives, 119, 1233–1238.

    Article  CAS  Google Scholar 

  • Collivignarelli, M. C., Abbà, A., Bertanza, G., et al. (2020). Lockdown for CoViD-2019 in Milan: What are the effects on air quality? Science of the Total Environment, 732, 139280.

    Article  CAS  Google Scholar 

  • Dong, J., Cai, X., Tian, L., et al. (2023). Satellite-based estimates of daily NO2 exposure in urban agglomerations of China and application to spatio-temporal characteristics of hotspots. Atmospheric Environment, 293, 119453.

    Article  CAS  Google Scholar 

  • Gu, J., Chen, L., Yu, C., et al. (2017). Ground-level NO2 concentrations over China inferred from the satellite OMI and CMAQ model simulations. Remote Sensing, 9, 519.

    Article  Google Scholar 

  • Guidotti, R., Monreale, A., Ruggieri, S., et al. (2018). A survey of methods for explaining black box mod-els. ACM Computing Surveys (CSUR), 51, 1–42.

    Article  Google Scholar 

  • Hashim, B. M., Al-Naseri, S. K., Al-Maliki, A., & Al-Ansari, N. (2021). Impact of COVID-19 lockdown on NO2, O3, PM2. 5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Science of the Total Environment, 754, 141978.

    Article  CAS  Google Scholar 

  • Hoek, G., Beelen, R., De Hoogh, K., et al. (2008). A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment, 42, 7561–7578.

    Article  CAS  Google Scholar 

  • Hu, X., Zhou, T., & Cai, S. (2017). The episodic geomorphological-sedimentary evolution of different basins in the Fenwei Graben and its tectonic implication. Journal of Geographical Sciences, 27, 1359–1375.

    Article  Google Scholar 

  • Huang, Z., Xu, X., Ma, M., & Shen, J. (2022). Assessment of NO2 population exposure from 2005 to 2020 in China. Environmental Science and Pollution Research, 29, 80257–80271.

    Article  CAS  Google Scholar 

  • Irga, P. J., Burchett, M. D., & Torpy, F. R. (2015). Does urban forestry have a quantitative effect on ambient air quality in an urban environment? Atmospheric Environment, 120, 173–181.

    Article  CAS  Google Scholar 

  • Judd, L. M., Al-Saadi, J. A., Szykman, J. J., et al. (2020). Evaluating Sentinel-5P TROPOMI tropospheric NO2 column densities with airborne and Pandora spectrometers near New York City and Long Island Sound. Atmospheric Measurement Techniques, 13, 6113–6140.

    Article  CAS  Google Scholar 

  • Kang, Y., Choi, H., Im, J., et al. (2021). Estimation of surface-level NO2 and O3 concentrations using TROPOMI data and machine learning over East Asia. Environmental Pollution, 288, 117711.

    Article  CAS  Google Scholar 

  • Lamsal, L. N., Duncan, B. N., Yoshida, Y., et al. (2015). US NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI). Atmospheric Environment, 110, 130–143.

    Article  CAS  Google Scholar 

  • Lee, D. S., Köhler, I., Grobler, E., et al. (1997). Estimations of global no, emissions and their uncertainties. Atmospheric Environment, 31, 1735–1749.

    Article  CAS  Google Scholar 

  • Li, L., Qian, J., Ou, C.-Q., et al. (2014). Spatial and temporal analysis of air pollution index and its time-scale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011. Environmental Pollution, 190, 75–81.

    Article  CAS  Google Scholar 

  • Li, T., Wang, Y., Yuan, Q., et al. (2020). Remote sensing estimation of regional NO2 via space-time neural networks. Remote Sensing, 12, 2514.

    Article  Google Scholar 

  • Li, Y., & Tao, Y. (2018). Daily PM10 concentration forecasting based on multiscale fusion support vector regression. Journal of Intelligent & Fuzzy Systems, 34, 1–12.

    Article  Google Scholar 

  • Liu, M., Xiao, S., Wang, Y., et al. (2023). Synergistic analysis of atmospheric pollutants NO2 and PM2.5 based on land use regression models: A case study of the Yangtze River Delta, China. Environmental Monitoring and Assessment, 9, 1048.

    Article  Google Scholar 

  • Liu, S., Ju, T., Pan, B., et al. (2022). Aerosol analysis of China’s Fenwei Plain from 2012 to 2020 Based on OMI Satellite Data. Atmosphere, 13, 1728.

    Article  Google Scholar 

  • Liu, W., Yu, Y., Li, M., et al. (2022). Bioavailability and regional transport of PM2. 5 during heavy haze episode in typical coal city site of Fenwei Plain, China. Environmental Geochemistry and Health, 45, 1933–1949.

    Article  Google Scholar 

  • Lu, M., Schmitz, O., de Hoogh, K., et al. (2020). Evaluation of different methods and data sources to optimise modelling of NO2 at a global scale. Environment International, 142, 105856.

    Article  CAS  Google Scholar 

  • Lv, M., Li, Z., Jiang, Q., et al. (2021). Contrasting trends of surface PM2. 5, O3, and NO2 and their relationships with meteorological parameters in typical coastal and inland cities in the Yangtze River Delta. International Journal of Environmental Research and Public Health, 18, 12471.

    Article  CAS  Google Scholar 

  • Lv, Y., Tian, H., Luo, L., et al. (2022). Meteorology-normalized variations of air quality during the COVID-19 lockdown in three Chinese megacities. Atmospheric Pollution Research, 13, 101452.

    Article  CAS  Google Scholar 

  • Ma, J., Yu, Z., et al. (2019). Application of the XGBoost machine learning method in PM2.5 prediction: A case study of Shanghai. Aerosol and Air Quality Research, 20,128–138.

  • Müller, I., Erbertseder, T., & Taubenböck, H. (2022). Tropospheric NO2: Explorative analyses of spatial variability and impact factors. Remote Sensing of Environment, 270, 112839.

    Article  Google Scholar 

  • Pham, L. T., & Brabyn, L. (2017). Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms. ISPRS Journal of Photo-Grammetry and Remote Sensing, 128, 86–97.

    Article  Google Scholar 

  • Qin, K., Han, X., Li, D., et al. (2020). Satellite-based estimation of surface NO2 concentrations over east-central China: A comparison of POMINO and OMNO2d data. Atmospheric Environment, 224, 117322.

    Article  CAS  Google Scholar 

  • Richter, A., Burrows, J. P., Nüß, H., et al. (2005). Increase in tropospheric nitrogen dioxide over China ob-served from space. Nature, 437, 129–132.

    Article  CAS  Google Scholar 

  • Scarinzi, C., Alessandrini, E. R., Chiusolo, M., et al. (2013). Air pollution and urgent hospital admissions in 25 Italian cities: Results from the EpiAir2 project. Epidemiologia e Prevenzione, 37, 230–241.

    Google Scholar 

  • Silcox, G. D., Kelly, K. E., Crosman, E. T., et al. (2012). Wintertime PM2. 5 concentrations during persistent, multi-day cold-air pools in a mountain valley. Atmospheric Environment, 46, 17–24.

    CAS  Google Scholar 

  • Silibello, C., Carlino, G., Stafoggia, M., et al. (2021). Spatial-temporal prediction of ambient nitrogen di-oxide and ozone levels over Italy using a random forest model for population exposure assessment. Air Quality, Atmosphere & Health, 14, 817–829.

    Article  CAS  Google Scholar 

  • Steinfeld, J. I. (1998). Atmospheric chemistry and physics: From air pollution to climate change. Environment: Science and Policy for Sustainable Development, 40, 26–26.

    Google Scholar 

  • Veefkind, J. P., Aben, I., McMullan, K., et al. (2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, 120, 70–83.

    Article  Google Scholar 

  • Verhoelst, T., Compernolle, S., Pinardi, G., et al. (2021). Ground-based validation of the Copernicus Sen-tinel-5p TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks. Atmospheric Measurement Techniques, 14, 481–510.

    Article  CAS  Google Scholar 

  • Vinken, G. C. M., Boersma, K. F., Maasakkers, J. D., et al. (2014). Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations. Atmospheric Chemistry and Physics, 14, 10363–10381.

    Article  Google Scholar 

  • Wang, C., Wang, T., Wang, P., & Rakitin, V. (2020). Comparison and Validation of TROPOMI and OMI NO2 Observations over China. Atmosphere, 11, 636.

    Article  CAS  Google Scholar 

  • Wang, J., Cohan, D. S., & Xu, H. (2020). Spatiotemporal ozone pollution LUR models: Suitable statistical algorithms and time scales for a megacity scale. Atmospheric Environment, 237, 117671.

    Article  CAS  Google Scholar 

  • Wang, W., Liu, X., Bi, J., & Liu, Y. (2022). A machine learning model to estimate ground-level ozone concentrations in California using TROPOMI data and high-resolution meteorology. Environment International, 158, 106917.

    Article  CAS  Google Scholar 

  • Wu, N., Geng, G., Yan, L., et al. (2021). Improved spatial representation of a highly resolved emission inventory in China: Evidence from TROPOMI measurements. Environmental Research Letters, 16, 084056.

    Article  CAS  Google Scholar 

  • Xiao, C., Zhou, J., Meng, F., et al. (2023). Regional characteristics and spatial correlation of haze pollution: Interpretative system analysis in cities of Fenwei Plain in China. Science of The Total Environment, 869, 161779.

    Article  CAS  Google Scholar 

  • Xiao, J., He, C., Mu, H., et al. (2021). Spatiotemporal pattern and population exposure risks of air pollution in Chinese urban areas. Progress in Geography, 40, 1650–1663.

    Article  Google Scholar 

  • Xu, J., Lindqvist, H., Liu, Q., et al. (2021). Estimating the spatial and temporal variability of the ground-level NO2 concentration in China during 2005–2019 based on satellite remote sensing. Atmospheric Pollution Research, 12, 57–67.

    Article  Google Scholar 

  • Yang, X., Wang, X., Cui, S., et al. (2023). Spatio-temporal distribution characteristics and influencing factors of different aerosol types in the Guanzhong area. Acta Scientiae Circumstantiae, 43, 343–352.

    Google Scholar 

  • Ye, T., Zhao, N., Yang, X., et al. (2019). Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Science of the Total Environment, 658, 936–946.

    Article  CAS  Google Scholar 

  • Zhan, Y., Luo, Y., Deng, X., et al. (2018). Satellite-based estimates of daily NO2 exposure in China using hybrid random forest and spatiotemporal kriging model. Environmental Science & Technology, 52, 4180–4189.

    Article  CAS  Google Scholar 

  • Zhang, C., Liu, C., Li, B., et al. (2022). Spatiotemporal neural network for estimating surface NO2 concentrations over north China and their human health impact. Environmental Pollution, 307, 119510.

    Article  CAS  Google Scholar 

  • Zhang, Q., Streets, D. G., Carmichael, G. R., et al. (2009). Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 9, 5131–5153.

    Article  CAS  Google Scholar 

  • Zhao, Z., Liu, R., & Zhang, Z. (2020). Characteristics of winter haze pollution in the Fenwei plain and the possible influence of EU during 1984–2017. Earth and Space Science, 7, e2020EA001134.

    Article  Google Scholar 

  • Zheng, Z., Yang, Z., Wu, Z., & Marinello, F. (2019). Spatial variation of NO2 and its impact factors in China: An application of sentinel-5P products. Remote Sensing, 11, 1939.

    Article  Google Scholar 

  • Zou, B., Peng, F., Jiao, L., & Weng, M. (2013). GIS aided spatial zoning of high-resolution population exposure to air pollution. Geomatics and Information Science of Wuhan University, 38(3), 334–338.

    Google Scholar 

Download references

Funding

This work was supported by the General Program of National Natural Science Foundation of China (No. 41977059).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Yarui Wu and Honglei Liu. The first draft of the manuscript was written by Honglei Liu, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yarui Wu.

Ethics declarations

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Liu, H., Liu, S. et al. Estimate of near-surface NO2 concentrations in Fenwei Plain, China, based on TROPOMI data and random forest model. Environ Monit Assess 195, 1379 (2023). https://doi.org/10.1007/s10661-023-11993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11993-1

Keywords

Navigation