Skip to main content

Advertisement

Log in

Groundwater potential mapping in Trans Yamuna Region, Prayagraj, using combination of geospatial technologies and AHP method

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, the combination of Remote Sensing and Geographic Information System (GIS) was utilized to identify the Groundwater Potential Zones (GPZs) of the Trans-Yamuna region. The Groundwater Potential Zones (GPZ) were mapped by integrating drainage density, slope, geology, geomorphology, NDVI, lineament density, rainfall, soil types, land use & land cover, and topographic wetness index maps. For the prediction output to have a non-trivial degree of accuracy, multicollinearity tests were run before integrating the layers. Using the Analytical Hierarchy Process (AHP), groundwater recharge-affecting parameters and classes of each parameter were scored. All thematic layers were integrated using weighted linear combination on a GIS platform to create a groundwater potential zone map. The outcomes of the model indicate that the research region exhibits three distinct groundwater potential zones, namely low (11.928%; 354.884 km2), moderate (76.44%; 2274.4 km2), and high (11.267%; 345.943 km2), in sequential sequence. These categories define the model’s output in descending order of how closely it matches the actual conditions. After that, a map removal sensitivity analysis was also executed and found that geology, geomorphology, lineament density and drainage density strongly influence the prediction model for groundwater potential zone identification. The reliability of the results is established by employing a Receiver Operating Characteristic (ROC) curve for evaluation, which demonstrates a prediction accuracy of 81.3%. Authorities responsible for groundwater resource management can use this study’s findings to better inform future regulatory initiatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data and material are given in the manuscript.

References

  • Abdulkadir, T. S., Muhammad, R. U. M., Wan Yusof, K., Ahmad, M. H., Aremu, S. A., Gohari, A., & Abdurrasheed, A. S. (2019). Quantitative analysis of soil erosion causative factors for susceptibility assessment in a complex watershed. Cogent Engineering, 6(1). https://doi.org/10.1080/23311916.2019.1594506

  • Agarwal, E., Agarwal, R., Garg, R. D., & Garg, P. K. (2013). Delineation of groundwater potential zone: An AHP/ANP approach. Journal of Earth System Sciences, 122(3), 887–898.

    Article  Google Scholar 

  • Al-Abadi, A. M., Al-Temmeme, A. A., & Al-Ghanimy, M. A. (2016). A GIS-based combining of frequency ratio and index of entropy approaches for mapping groundwater availability zones at Badra–Al Al-Gharbi–Teeb areas, Iraq. Sustainable Water Resources Management, 2(3), 265–283. https://doi.org/10.1007/s40899-016-0056-5

    Article  Google Scholar 

  • Alesheikh, A. A., & Hosseinali, F. (2008). Weighting Spatial Information in GIS for Copper Mining Exploration. American Journal of Applied Sciences, 5(9), 1187–1198.

    Article  Google Scholar 

  • Al-Fugara, A., Pourghasemi, H. R., Al-Shabeeb, A. R., Habib, M., Al-Adamat, R., Al-Amoush, H., & Collins, A. L. (2020). A comparison of machine learning models for the mapping of groundwater spring potential. Environmental Earth Sciences, 79(10). https://doi.org/10.1007/s12665-020-08944-1

  • Allafta, H., Opp, C., & Patra, S. (2021). Identification of groundwater potential zones using remote sensing and GIS techniques: A case study of the shatt Al-Arab Basin. Remote Sensing, 13(1), 1–28. https://doi.org/10.3390/rs13010112

    Article  Google Scholar 

  • Antonio Alonso, J., & Teresa Lamata, M. (2006). Consistency in the Analytic Hierarchy Process: a new approach. In International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 14(4). www.worldscientific.com. Accessed 8 Jul 2023.

  • Arabameri, A., Pradhan, B., Pourghasemi, H. R., & Rezaei, K. (2018). Identification of erosion-prone areas using different multi-criteria decision-making techniques and gis. Geomatics Natural Hazards and Risk, 9(1), 1129–1155. https://doi.org/10.1080/19475705.2018.1513084

    Article  Google Scholar 

  • Arefin, R. (2020). Groundwater potential zone identification at Plio-Pleistocene elevated tract, Bangladesh: AHP-GIS and remote sensing approach. Groundwater for Sustainable Development, 10. https://doi.org/10.1016/j.gsd.2020.100340

  • Arefin, R. (2020). Groundwater potential zone identification using an analytic hierarchy process in Dhaka City, Bangladesh. Environmental Earth Sciences, 79(11). https://doi.org/10.1007/s12665-020-09024-0

  • Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP Techniques Based Delineation of Groundwater Potential Zones: a case study from Southern Western Ghats, India. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-38567-x

  • Ballerine, C. (2017). Topographic Wetness Index Urban Flooding Awareness Act Action Support.Will and DuPage Counties, Illinois.

  • Bera, A., Mukhopadhyay, B. P., & Barua, S. (2020). Delineation of groundwater potential zones in Karha river basin, Maharashtra, India, using AHP and geospatial techniques. Arabian Journal of Geosciences, 13(15). https://doi.org/10.1007/s12517-020-05702-2

  • Berhanu, B., Melesse, A. M., & Seleshi, Y. (2013). GIS-based hydrological zones and soil geo-database of Ethiopia. Catena, 104, 21–31. https://doi.org/10.1016/j.catena.2012.12.007

    Article  Google Scholar 

  • Beven, K. (1997). TOPMODEL: A critique. Hydrological Processes, 11(9), 1069–1085. https://doi.org/10.1002/(SICI)1099-1085(199707)11:9%3c1069::AID-HYP545%3e3.0.CO;2-O

    Article  Google Scholar 

  • Biju, C., Saktivel, R., Matheswaran, S., Akhila, P., & Rajkumar, P. (2018). Application of Analytic Hierarchy Process (AHP) in Groundwater Potential Mapping Using Remote Sensing and GIS in Nagavathi Sub-Basin, Tamil Nadu India. JASC: Journal of Applied Science and Computations, 5(9), 744.

    Google Scholar 

  • Biswas, A., Arkoprovo, B., Adarsa, J., & Prakash, S. S. (2012). Delineation of Groundwater potential zones using Remote Sensing and Geographic Information System Techniques: A case study from Ganjam district, Orissa Delineation of Groundwater Potential Zones using Satellite Remote Sensing and Geographic Information System Techniques: A Case study from Ganjam district, Orissa, India. In Research Journal of Recent Sciences, 1(9). www.isca.in. Accessed 13 Nov 2022.

  • Blachowski, J. (2016). Application of GIS spatial regression methods in assessment of land subsidence in complicated mining conditions: Case study of the Walbrzych coal mine (SW Poland). Natural Hazards, 84(2), 997–1014. https://doi.org/10.1007/s11069-016-2470-2

    Article  Google Scholar 

  • Boughariou, E., Allouche, N., Ben Brahim, F., Nasri, G., & Bouri, S. (2021). Delineation of groundwater potentials of Sfax region, Tunisia, using fuzzy analytical hierarchy process, frequency ratio, and weights of evidence models. Environment, Development and Sustainability, 23(10), 14749–14774. https://doi.org/10.1007/s10668-021-01270-x

    Article  Google Scholar 

  • Castillo, J. L. U., Cruz, D. A. M., Leal, J. A. R., Vargas, J. T., Tapia, S. A. R., & Celestino, A. E. M. (2022). Delineation of Groundwater Potential Zones (GWPZs) in a Semi-Arid Basin through Remote Sensing, GIS, and AHP Approaches. Water (Switzerland), 14(13). https://doi.org/10.3390/w14132138

  • Census (2011). https://www.census2011.co.in/census/district/546-allahabad.html

  • CGWB. (2021). National Compilation on Dynamic Ground Water Resources of India, 2020. http://cgwb.gov.in/GW-Assessment/GWRA-2017-National-Compilation.pdf

  • Chen, W., Peng, J., Hong, H., Shahabi, H., Liu, J., Zhu, A.-X., Pei, X., & Duan, Z. (2018). Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China.

  • Chowdhury, A., Jha, M. K., Chowdary, V. M., & Mal, B. C. (2008). Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. International Journal of Remote Sensing, 30(1), 231–250. https://doi.org/10.1080/01431160802270131

    Article  Google Scholar 

  • Dar, T., Rai, N., & Bhat, A. (2021). Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geology, Ecology, and Landscapes, 5(4), 292–307. https://doi.org/10.1080/24749508.2020.1726562

    Article  Google Scholar 

  • Das, S., Gupta, A., & Ghosh, S. (2017). Exploring groundwater potential zones using MIF technique in semi-arid region: A case study of Hingoli district, Maharashtra. Spatial Information Research, 25(6), 749–756. https://doi.org/10.1007/s41324-017-0144-0

    Article  Google Scholar 

  • Das, S., & Pardeshi, S. D. (2018). Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: a study of Pravara basin, Maharashtra, India. Applied Water Science, 8(7). https://doi.org/10.1007/s13201-018-0848-x

  • Dhinsa, D., Tamiru, F., & Tadesa, B. (2022). Groundwater potential zonation using VES and GIS techniques: A case study of Weserbi Guto catchment in Sululta, Oromia, Ethiopia. Heliyon, 8(8). https://doi.org/10.1016/j.heliyon.2022.e10245

  • Doke, A. B., Zolekar, R. B., Patel, H., & Das, S. (2021). Geospatial mapping of groundwater potential zones using multi-criteria decision-making AHP approach in a hardrock basaltic terrain in India. Ecological Indicators, 127. https://doi.org/10.1016/j.ecolind.2021.107685

  • Edet, A. E., Okereke, C. S., Esu, E. O., & Teme, S. C. (1998). Application of remote-sensing data to groundwater exploration: A case study of the Cross River State, southeastern Nigeria. In Hydrogeology Journal, 6. Springer-Verlag Received.

  • Fetter (2001). Applied hydrology, 4th Edition.

  • Fitts, C. R. (2013). Groundwater. In Groundwater Science (pp. 1–22). Elsevier. https://doi.org/10.1016/B978-0-12-384705-8.00001-7

  • Ganapuram, S., Kumar, G. T. V., Krishna, I. V. M., Kahya, E., & Demirel, M. C. (2009). Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Advances in Engineering Software, 40(7), 506–518. https://doi.org/10.1016/j.advengsoft.2008.10.001

    Article  Google Scholar 

  • Gassama Jallow, A., Diongue, D. M. L., Emvoutou, C. H., Mama, D., & Faye, S. (2020). Groundwater Recharge Zone Mapping Using GIS-based Analytical Hierarchy Process and Multi-Criteria Evaluation: Case Study of Greater Banjul Area. American Journal of Water Resources, 8(4), 182–190. https://doi.org/10.12691/ajwr-8-4-4

    Article  CAS  Google Scholar 

  • Gnanachandrasamy, G., Zhou, Y., Bagyaraj, M., Venkatramanan, S., Ramkumar, T., & Wang, S. (2018). Remote Sensing and GIS Based Groundwater Potential Zone Mapping in Ariyalur District, Tamil Nadu. Journal of the Geological Society of India, 92(4), 484–490. https://doi.org/10.1007/s12594-018-1046-z

    Article  Google Scholar 

  • Gorsevski, P. V., Gessler, P. E., Foltz, R. B., & Elliot, W. J. (2006). Spatial prediction of landslide hazard using logistic regression and ROC analysis. Transactions in GIS, 10(3), 395–415. https://doi.org/10.1111/j.1467-9671.2006.01004.x

    Article  Google Scholar 

  • Guisan, A., Weiss, S. B., & Weiss, A. D. (1999). GLM versus CCA spatial modelling of plant species distribution. In Plant Ecology, 143.

  • Guru, B., Seshan, K., & Bera, S. (2017). Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert, India. Journal of King Saud University - Science, 29(3), 333–347. https://doi.org/10.1016/j.jksus.2016.08.003

    Article  Google Scholar 

  • Han, L., Liu, Z., Ning, Y., & Zhao, Z. (2018). Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area. Advances in Space Research, 62(9), 2480–2493. https://doi.org/10.1016/j.asr.2018.07.030

    Article  Google Scholar 

  • Hasanuzzaman, M., Mandal, M. H., Hasnine, M., & Shit, P. K. (2022). Groundwater potential mapping using multi-criteria decision, bivariate statistic and machine learning algorithms: evidence from Chota Nagpur Plateau, India. Applied Water Science, 12(4). https://doi.org/10.1007/s13201-022-01584-9

  • Ifediegwu, S. I. (2022). Assessment of groundwater potential zones using GIS and AHP techniques: a case study of the Lafia district, Nasarawa State, Nigeria. Applied Water Science, 12(1). https://doi.org/10.1007/s13201-021-01556-5

  • Islami, F. A., Tarigan, S. D., Wahjunie, E. D., & Dasanto, B. D. (2022). Accuracy Assessment of Land Use Change Analysis Using Google Earth in Sadar Watershed Mojokerto Regency. IOP Conference Series: Earth and Environmental Science, 950(1). https://doi.org/10.1088/1755-1315/950/1/012091

  • Israil, M., Al-hadithi, M., & Singhal, D. C. (2006). Application of a resistivity survey and geographical information system (GIS) analysis for hydrogeological zoning of a piedmont area, Himalayan foothill region, India. Hydrogeology Journal, 14(5), 753–759. https://doi.org/10.1007/s10040-005-0483-0

    Article  CAS  Google Scholar 

  • Jaiswal, R. K., Mukherjee, S., Krishnamurthy, J., & Saxena, R. (2003). Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development - An approach. International Journal of Remote Sensing, 24(5), 993–1008. https://doi.org/10.1080/01431160210144543

    Article  Google Scholar 

  • Jal-shakti. (2020). Extraction of Groundwater, Ministry of Jal Shakti.

  • Jasrotia, A. S., Kumar, A., & Singh, R. (2016). Integrated remote sensing and GIS approach for delineation of groundwater potential zones using aquifer parameters in Devak and Rui watershed of Jammu and Kashmir, India. Arabian Journal of Geosciences, 9(4). https://doi.org/10.1007/s12517-016-2326-9

  • Kabeto, J., Adeba, D., Regasa, M. S., & Leta, M. K. (2022). Groundwater Potential Assessment Using GIS and Remote Sensing Techniques: Case Study of West Arsi Zone, Ethiopia. Water (Switzerland), 14(12). https://doi.org/10.3390/w14121838

  • Kafi, K. M., Shafri, H. Z. M., & Shariff, A. B. M. (2014). An analysis of LULC change detection using remotely sensed data; A Case study of Bauchi City. IOP Conference Series: Earth and Environmental Science, 20(1). https://doi.org/10.1088/1755-1315/20/1/012056

  • Kaliraj, S., Chandrasekar, N., & Magesh, N. S. (2014). Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arabian Journal of Geosciences, 7(4), 1385–1401. https://doi.org/10.1007/s12517-013-0849-x

    Article  Google Scholar 

  • Kim, J. C., Jung, H. S., & Lee, S. (2019). Spatial mapping of the groundwater potential of the Geum River basin using ensemble models based on remote sensing images. Remote Sensing, 11(19). https://doi.org/10.3390/rs11192285

  • Kindie, A. T., Enku, T., Moges, M. A., Geremew, B. S., & Atinkut, H. B. (2019). Spatial analysis of groundwater potential using gis based multi criteria decision analysis method in Lake Tana Basin, Ethiopia. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 274, 439–456. https://doi.org/10.1007/978-3-030-15357-1_37

    Article  Google Scholar 

  • Kumar, A., & Krishna, A. P. (2018). Assessment of groundwater potential zones in coal mining impacted hard-rock terrain of India by integrating geospatial and analytic hierarchy process (AHP) approach. Geocarto International, 33(2), 105–129. https://doi.org/10.1080/10106049.2016.1232314

    Article  Google Scholar 

  • Kumar, M., Sharma, K. K., Lal, D., Atul, Imam, A., & Suryavanshi, S. (2018). Identifying Prospective Areas for Groundwater Potential Zone in Allahabad City. Journal of Environmental Nanotechnology, 7(4), 16–24. https://doi.org/10.13074/jent.2018.12.184336

    Article  Google Scholar 

  • Kumar Dinkar, G., Singh, V., Dinkar, G. K., Farooqui, S. A., Singh, V. K., Verma, A. K., & Prabhat, P. (2019). Geology of South and Southwest part of Uttar Pradesh and its Mineral Significance Geodynamic Evolution of Bundelkhand craton, India View project Geodynamic Evolution of Bundelkhand Craton and Garhwal Himalaya View project Geology of South and Southwest part of Uttar Pradesh and its Mineral Significance. https://doi.org/10.25299/jgeet.2019.4.2-2.2441

  • Kumar, M., Singh, S. K., Kundu, A., Tyagi, K., Menon, J., Frederick, A., Raj, A., & Lal, D. (2022). GIS-based multi-criteria approach to delineate groundwater prospect zone and its sensitivity analysis. Applied Water Science, 12(4). https://doi.org/10.1007/s13201-022-01585-8

  • Lakshmi, S., V., Vinay, L. Y., & Reddy, K. (2018). Identification of groundwater potential zones using gis and remote sensing. International Journal of Pure and Applied Mathematics, 119(17), 3195–3210. http://www.acadpubl.eu/hub/. Accessed 14 Nov 2022

  • le Page, M., Berjamy, B., Fakir, Y., Bourgin, F., Jarlan, L., Abourida, A., Benrhanem, M., Jacob, G., Huber, M., Sghrer, F., Simonneaux, V., & Chehbouni, G. (2012). An Integrated DSS for Groundwater Management Based on Remote Sensing. The Case of a Semi-arid Aquifer in Morocco. Water Resources Management, 26(11), 3209–3230. https://doi.org/10.1007/s11269-012-0068-3

    Article  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2011). Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: A GIS approach. Environmental Earth Sciences, 64(2), 373–381. https://doi.org/10.1007/s12665-010-0860-4

    Article  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 3(2), 189–196. https://doi.org/10.1016/j.gsf.2011.10.007

    Article  Google Scholar 

  • Mageshkumar, P., Subbaiyan, A., Lakshmanan, E., & Thirumoorthy, P. (2019). Application of geospatial techniques in delineating groundwater potential zones: a case study from South India. Arabian Journal of Geosciences, 12(5). https://doi.org/10.1007/s12517-019-4289-0

  • Mahato, R., Bushi, D., Nimasow, G., Dai Nimasow, O., Chandra Joshi, R., & Mahato, R. (2021). AHP and GIS-based Delineation of Groundwater Potential of Papumpare District of Arunachal Pradesh (India). https://doi.org/10.21203/rs.3.rs-350312/v1

  • Maity, B., Mallick, S. K., Das, P., & Rudra, S. (2022). Comparative analysis of groundwater potentiality zone using fuzzy AHP, frequency ratio and Bayesian weights of evidence methods. Applied Water Science, 12(4). https://doi.org/10.1007/s13201-022-01591-w

  • Mallick, J., Singh, C. K., Al-Wadi, H., Ahmed, M., Rahman, A., Shashtri, S., & Mukherjee, S. (2015). Geospatial and geostatistical approach for groundwater potential zone delineation. Hydrological Processes, 29(3), 395–418. https://doi.org/10.1002/hyp.10153

    Article  Google Scholar 

  • Mallick, J., Alqadhi, S., Talukdar, S., Alsubih, M., Ahmed, M., Khan, R. A., Ben Kahla, N., & Abutayeh, S. M. (2021). Risk assessment of resources exposed to rainfall induced landslide with the development of gis and rs based ensemble metaheuristic machine learning algorithms. Sustainability (Switzerland), 13(2), 1–30. https://doi.org/10.3390/su13020457

    Article  Google Scholar 

  • Manap, M. A., Sulaiman, W. N. A., Ramli, M. F., Pradhan, B., & Surip, N. (2013). A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arabian Journal of Geosciences, 6(5), 1621–1637. https://doi.org/10.1007/s12517-011-0469-2

    Article  Google Scholar 

  • Manap, M. A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W. N. A., & Ramli, M. F. (2014). Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences, 7(2), 711–724. https://doi.org/10.1007/s12517-012-0795-z

    Article  Google Scholar 

  • Melese, T., & Belay, T. (2022). Groundwater Potential Zone Mapping Using Analytical Hierarchy Process and GIS in Muga Watershed, Abay Basin, Ethiopia. Global Challenges, 6(1), 2100068. https://doi.org/10.1002/gch2.202100068

    Article  Google Scholar 

  • Ministry of Environment Forest and Climate Change Notification. (2018). District Survey Report. 7(July), 29.

  • Moghaddam, D. D., Rezaei, M., Pourghasemi, H. R., Pourtaghie, Z. S., & Pradhan, B. (2015). Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan Watershed, Iran. Arabian Journal of Geosciences, 8(2), 913–929. https://doi.org/10.1007/s12517-013-1161-5

    Article  Google Scholar 

  • Mohammady, M., Pourghasemi, H. R., & Pradhan, B. (2012). Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. Journal of Asian Earth Sciences, 61, 221–236. https://doi.org/10.1016/j.jseaes.2012.10.005

    Article  Google Scholar 

  • Moharir, K. N., Pande, C. B., Gautam, V. K., Singh, S. K., & Rane, N. L. (2023). Integration of hydrogeological data, GIS, and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone, and shales rocks of the Damoh district, (MP) central India. Environmental Research, 228, 115832. https://doi.org/10.1016/j.envres.2023.115832

    Article  CAS  Google Scholar 

  • Mukherjee, P., Singh, C. K., & Mukherjee, S. (2012). Delineation of Groundwater Potential Zones in Arid Region of India-A Remote Sensing and GIS Approach. Water Resources Management, 26(9), 2643–2672. https://doi.org/10.1007/s11269-012-0038-9

    Article  Google Scholar 

  • Mukherjee, I., & Singh, U. K. (2020). Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques. Catena, 194. https://doi.org/10.1016/j.catena.2020.104681

  • Muralitharan, J., & Palanivel, K. (2015). Groundwater targeting using remote sensing, geographical information system and analytical hierarchy process method in hard rock aquifer system, Karur district, Tamil Nadu, India. Earth Science Informatics, 8(4), 827–842. https://doi.org/10.1007/s12145-015-0213-7

    Article  Google Scholar 

  • Murmu, P., Kumar, M., Lal, D., Sonker, I., & Singh, S. K. (2019). Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundwater for Sustainable Development, 9. https://doi.org/10.1016/j.gsd.2019.100239

  • Murthy, K. S. R., & Mamo, A. G. (2009). Multi-criteria decision evaluation in groundwater zones identification in Moyale-Teltele subbasin, South Ethiopia. International Journal of Remote Sensing, 30(11), 2729–2740. https://doi.org/10.1080/01431160802468255

    Article  Google Scholar 

  • Naghibi, S. A., Pourghasemi, H. R., & Dixon, B. (2016). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment, 188(1), 1–27. https://doi.org/10.1007/s10661-015-5049-6

    Article  Google Scholar 

  • Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1–2), 11–20. https://doi.org/10.1016/j.enggeo.2009.10.001

    Article  Google Scholar 

  • Narayanamurthi, V., & Ramasamy, A. (2022). Groundwater potential zoning by integrating multi-criteria decision and bivariate analysis methods–a case study on Cheyyar River Basin, Tamil Nadu, India. Geocarto International. https://doi.org/10.1080/10106049.2022.2088864

    Article  Google Scholar 

  • Narendra Modi, S. (n.d.). राष्ट्रीय जल मिशन National Water Mission जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय Ministry of Water Resources, River Development and Ganga Rejuvenation भारत सरकार Government of India A year of Inclusive Development in Water Resources sector...... Sushri Uma Bharati Minister for Water Resources, River Development and Ganga Rejuvenation Prof. Sanwar Lal Jat Minister of State for Water Resources, River Development and Ganga Rejuvenation.

  • Oke, S. A. (2020). Regional aquifer vulnerability and pollution sensitivity analysis of DRASTIC: Application to Dahomey Basin of Nigeria. International Journal of Environmental Research and Public Health, 17(7), 2609. https://doi.org/10.3390/ijerph17072609

    Article  CAS  Google Scholar 

  • Owolabi, S. T., Madi, K., Kalumba, A. M., & Orimoloye, I. R. (2020). A groundwater potential zone mapping approach for semi-arid environments using remote sensing (RS), geographic information system (GIS), and analytical hierarchical process (AHP) techniques: A case study of Buffalo catchment, Eastern Cape, South Africa. Arabian Journal of Geosciences, 13, 1184. https://doi.org/10.1007/s12517-020-06166-0/Published

    Article  Google Scholar 

  • Ozdemir, A. (2011). GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. Journal of Hydrology, 411(3–4), 290–308. https://doi.org/10.1016/j.jhydrol.2011.10.010

    Article  Google Scholar 

  • Pande, C. B., Moharir, K. N., Panneerselvam, B., Singh, S. K., Elbeltagi, A., Pham, Q. B., Varade, A. M., & Rajesh, J. (2021). Delineation of groundwater potential zones for sustainable development and planning using analytical hierarchy process (AHP), and MIF techniques. Applied Water Science, 11(12). https://doi.org/10.1007/s13201-021-01522-1

  • Pandey, H. K., (2009). Ground water brochure of allahabad district, U.P., (A.A.P.: 2008–2009), pages 18.

  • Pant, S., Kumar, A., Ram, M., Klochkov, Y., & Sharma, H. K. (2022). Consistency Indices in Analytic Hierarchy Process: A Review. In Mathematics, 10(8). MDPI. https://doi.org/10.3390/math10081206

  • Parizi, E., Hosseini, S. M., Ataie-Ashtiani, B., & Simmons, C. T. (2020). Normalized difference vegetation index as the dominant predicting factor of groundwater recharge in phreatic aquifers: case studies across Iran. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-74561-4

  • Park, I., Kim, Y., & Lee, S. (2014). Groundwater productivity potential mapping using evidential belief function. Ground Water, 52, 201–207. https://doi.org/10.1111/gwat.12197

    Article  CAS  Google Scholar 

  • Patra, S., Mishra, P., & Mahapatra, S. C. (2018). Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. Journal of Cleaner Production, 172, 2485–2502. https://doi.org/10.1016/j.jclepro.2017.11.161

    Article  Google Scholar 

  • Pinto, D., Shrestha, S., Babel, M. S., & Ninsawat, S. (2017). Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Applied Water Science, 7(1), 503–519. https://doi.org/10.1007/s13201-015-0270-6

    Article  CAS  Google Scholar 

  • Pourghasemi, H. R., & Beheshtirad, M. (2015). Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran. Geocarto International, 30(6), 662–685. https://doi.org/10.1080/10106049.2014.966161

    Article  Google Scholar 

  • Pourtaghi, Z. S., & Pourghasemi, H. R. (2014). GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeology Journal, 22(3), 643–662. https://doi.org/10.1007/s10040-013-1089-6

  • Preliminary Draft Report District Survey Report-Allahabad (In-situ Rock) Content. (2018).

  • Rajasekhar, M., Sudarsana Raju, G., & Siddi Raju, R. (2019). Assessment of groundwater potential zones in parts of the semi-arid region of Anantapur District, Andhra Pradesh, India using GIS and AHP approach. Modelling Earth Systems and Environment, 5(4), 1303–1317. https://doi.org/10.1007/s40808-019-00657-0

    Article  Google Scholar 

  • Rajesh, J., Pande, C. B., Kadam, S. A., Gorantiwar, S. D., & Shinde, M. G. (2021). Exploration of groundwater potential zones using analytical hierarchical process (AHP) approach in the Godavari River basin of Maharashtra in India. Applied Water Science, 11(12). https://doi.org/10.1007/s13201-021-01518-x

  • Razandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867–883. https://doi.org/10.1007/s12145-015-0220-8

    Article  Google Scholar 

  • Rejith, R. G., Anirudhan, S., & Sundararajan, M. (2019). Delineation of groundwater potential zones in hard rock terrain using integrated remote sensing, GIS and MCDM techniques: A case study from vamanapuram river basin, Kerala, India. In GIS and Geostatistical Techniques for Groundwater Science (pp. 349–364). Elsevier. https://doi.org/10.1016/B978-0-12-815413-7.00025-0

  • Rossi, M., Bornaetxea, T., & Reichenbach, P. (2021). LAND-SUITE V1.0: a suite of tools for statistically-based landslide susceptibility zonation. Geoscientific Model Development. 10.5194/gmd-2021-343

  • Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-I

    Article  Google Scholar 

  • Saaty, T. L., & Vargas, L. G. (1980). Hierarchical analysis of behavior in competition: Prediction in chess. Behavioral Science, 25(3), 180–191. https://doi.org/10.1002/bs.3830250303

    Article  Google Scholar 

  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. In International Journal of Services Sciences, 1(1).

  • Sadat-Noori, M., & Ebrahimi, K. (2016). Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model. Environmental Monitoring and Assessment, 188, 19. https://doi.org/10.1007/s10661-015-4915-6

    Article  CAS  Google Scholar 

  • Saha, S. (2017). Groundwater potential mapping using analytical hierarchical process: a study on Md. Bazar Block of Birbhum District, West Bengal. Spatial Information Research, 25(4), 615–626. https://doi.org/10.1007/s41324-017-0127-1

    Article  Google Scholar 

  • Saha, A. K., & Agrawal, S. (2020). Mapping and assessment of flood risk in Prayagraj district, India: a GIS and remote sensing study. Nanotechnology for Environmental Engineering, 5(2). https://doi.org/10.1007/s41204-020-00073-1

  • Sar, N., Khan, A., Chatterjee, S., & Das, A. (2015). Hydrologic delineation of ground water potential zones using geospatial technique for Keleghai river basin, India. Modelling Earth Systems and Environment, 1(3). https://doi.org/10.1007/s40808-015-0024-3

  • Saranya, T., & Saravanan, S. (2020). Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modelling Earth Systems and Environment, 6(2), 1105–1122. https://doi.org/10.1007/s40808-020-00744-7

    Article  Google Scholar 

  • Sarmah, T., & Das, S. (2018). Urban flood mitigation planning for Guwahati: A case of Bharalu basin. Journal of Environmental Management, 206, 1155–1165. https://doi.org/10.1016/j.jenvman.2017.10.079

    Article  Google Scholar 

  • Satpathy, B. N., & Kanungo, D. N. (1976). Groundwater exploration in hard-rock terrain-a case history. Geophysical Prospecting, 24, 725–776.

    Article  Google Scholar 

  • Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11(10), 1577–1593. https://doi.org/10.1111/j.1365-2486.2005.01026.x

    Article  Google Scholar 

  • Senapati, U., & Das, T. K. (2022). GIS-based comparative assessment of groundwater potential zone using MIF and AHP techniques in Cooch Behar district, West Bengal. Applied Water Science, 12(3). https://doi.org/10.1007/s13201-021-01509-y

  • Senapati, U., & Das, T. K. (2021). Assessment of basin-scale groundwater potentiality mapping in drought-prone upper Dwarakeshwar River basin, West Bengal, India, using GIS-based AHP techniques. Arab Journal of Geosciences, 14, 960. https://doi.org/10.1007/s12517-021-07316-8

    Article  Google Scholar 

  • Shukla, S. M. (2014). Spatial Analysis for Groundwater Potential Zones using GIS and Remote Sensing in the Tons Basin of Allahabad District, Uttar Pradesh, (India). Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 84(4), 587–593. https://doi.org/10.1007/s40010-014-0157-1

    Article  Google Scholar 

  • Sikdar, P. K. (2018). Groundwater development and management: Issues and challenges in South Asia. Groundwater Development and Management: Issues and Challenges in South Asia, January, 1–539. https://doi.org/10.1007/978-3-319-75115-3

  • Singh, S., & Srivastava, R. (2011). Geology of Allahabad (India) and assessment of recharge for sustainability. Proceedings of Indian Geotechnical Conference, 15–17.

  • Sonwane, K., & Ullah Usmani, H. (2021). Assessment of Groundwater Potential Zones Using Geographic Information System and Analytic Hierarchy Process (AHP) Techniques in Chhoti Kali Sindh Watershed in Ujjain district, Madhya Pradesh, India. Journal of Science and Technology, 06, 122–131. https://doi.org/10.46243/jst.2021.v6.i05.pp122-131

    Article  Google Scholar 

  • Syed Wamiq Ali, Q., Lal, D., Jafri Ahsan, M., & Qazi Syed Wamiq Ali, C. (2015). Impact Factor: 5.2 IJAR. 1(13), 586–591. www.allresearchjournal.com. Accessed 21 Sept 2023

  • Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., Macdonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., & Treidel, H. (2013). Ground water and climate change. Nature Climate Change, 3(4), 322–329. https://doi.org/10.1038/nclimate1744

    Article  Google Scholar 

  • Thapa, R., Gupta, S., Guin, S., & Kaur, H. (2018). Sensitivity analysis and mapping the potential groundwater vulnerability zones in Birbhum district, India: A comparative approach between vulnerability models. Water Science, 32(1), 44–66. https://doi.org/10.1016/j.wsj.2018.02.003

    Article  Google Scholar 

  • Tiwari, V. (2018). Mapping Groundwater Potential Zones in Meja Block, Allahabad District Using Remote Sensing and GIS Techniques. International Journal of Pure & Applied Bioscience, 6(5), 573–583. https://doi.org/10.18782/2320-7051.6898

    Article  Google Scholar 

  • Todd. (2005). Groundwater hydrology, 3rd Edition.

  • Tolche, A. D. (2021). Groundwater potential mapping using geospatial techniques: A case study of Dhungeta-Ramis sub-basin, Ethiopia. Geology, Ecology, and Landscapes, 5(1), 65–80. https://doi.org/10.1080/24749508.2020.1728882

    Article  Google Scholar 

  • Unesco, (2020). World Water Assessment Programme (United Nations), & UN-Water. Water and climate change.

  • Vaux, H. (2011). Groundwater under stress: The importance of management. Environmental Earth Sciences, 62(1), 19–23. https://doi.org/10.1007/s12665-010-0490-x

    Article  CAS  Google Scholar 

  • Verma, N., & Patel, R. K. (2021). Delineation of groundwater potential zones in lower Rihand River Basin, India using geospatial techniques and AHP. Egyptian Journal of Remote Sensing and Space Science, 24(3), 559–570. https://doi.org/10.1016/j.ejrs.2021.03.005

    Article  Google Scholar 

  • Waikar M.L. & Nilawar, A. P. (2014). Identification of Groundwater Potential Zone using Remote Sensing and GIS Technique. In International Journal of Innovative Research in Science, Engineering and Technology, 3 (5), (An ISO 3297:2007). http://www.ijirset.com. Accessed 1 Oct 2021.

  • Yeh, H. F., Cheng, Y. S., Lin, H. I., & Lee, C. H. (2016). Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustainable Environment Research, 26(1), 33–43. https://doi.org/10.1016/j.serj.2015.09.005

    Article  CAS  Google Scholar 

  • Zhang, Q., Zhang, S., Zhang, Y., Li, M., Wei, Y., Chen, M., Zhang, Z., & Dai, Z. (2021). GIS-based groundwater potential assessment in varied topographic areas of Mianyang city, Southwestern China, using AHP. Remote Sensing, 13(22). https://doi.org/10.3390/rs13224684

Download references

Acknowledgements

The authors express their sincere gratitude to the anonymous reviewers for their invaluable comments, which significantly enhanced the quality and readability of the manuscript. They also appreciate the cooperation and valuable suggestions provided by the editor, whose support was instrumental in improving the work. Additionally, Swarnim and I.S. extend their heartfelt thanks to the University Grants Commission (U.G.C.), New Delhi, for awarding them Junior and Senior Research Fellowships, respectively.

Funding

Swarnim and Irjesh Sonker thankfully acknowledge University Grants Commission (U.G.C.), New Delhi, for Junior and Senior Research Fellowship awarded to them, respectively.

Author information

Authors and Affiliations

Authors

Contributions

(applicable for submissions with multiple authors)

Jayant Nath Tripathi: Conceptualized the problem, resources and supervision;

Swarnim and Irjesh Sonker: methodology and formal analysis, original draft preparation

Swarnim, Irjesh Sonker, Jayant Nath Tripathi and Surya Prakash Tiwari: writing—discussion, review and editing

All authors have read and agreed to the published version of the manuscript.

All authors have read, understood, and have complied as applicable w`ith the statement on "Ethical responsibilities of Authors" as found in the Instructions for Authors.

Corresponding author

Correspondence to Jayant Nath Tripathi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swarnim, Tripathi, J.N., Sonker, I. et al. Groundwater potential mapping in Trans Yamuna Region, Prayagraj, using combination of geospatial technologies and AHP method. Environ Monit Assess 195, 1375 (2023). https://doi.org/10.1007/s10661-023-11934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11934-y

Keywords

Navigation