Skip to main content

Advertisement

Log in

A critical analysis of various post-harvest arsenic removal treatments of rice and their impact on public health due to nutrient loss

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Rice (Oryza sativa L.) is particularly susceptible to arsenic (As) accumulation. Currently, to decrease the level of As accumulated in rice, various post-harvest methods, i.e., polishing, parboiling, pH-dependent soaking, washing, and cooking at different rice-to-water ratios (r/w), are being focused, because it removes significant amount of As from rice grain. Depending upon the rice variety and type, i.e., rough (with husk), husked (without husk/brown), or polished rice, these methods can remove 39–54% As by parboiling, 38–55% by polishing, 37–63% by soaking, and 6–80% by washing and cooking. Infants are highly vulnerable to As exposure; thus, these methods can be helpful for the production of rice-based infant foods. Although concern arises during the use of these methods that apart from decreasing the level of As in rice grain, they also lead to a significant loss of nutrients, such as macro- and micro-elements present in rice. Among these discussed methods, parboiling curtails 5–59%, polishing curtails 6–96%, soaking curtails 33–83%, and washing and cooking in different r/w reduce 8–81% of essential nutrients resulting in 2–90% reduction in contribution to the RDI of these nutrients through rice-based diet. Thus, these post-harvest arsenic removal methods, although reduce arsenic induced health hazard, but may also lead to malnutrition and compromised health in the population based on rice diet. There is a need to explore another way to reduce As from rice without compromising the nutrient availability or to supplement these nutrients through grain enrichment or by introducing additional dietary sources by changing eating habits; however, this may impose an extra economic burden on people.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding authors on reasonable request.

References

  • Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., & Cotter-Howells, J. (2002). Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science & Technology, 36(5), 962–968.

    CAS  Google Scholar 

  • Arroyo, H. A., & Fernández, M. C. (2013). Environmental toxic and its effect on neurodevelopment. Medicina, 73, 93–102.

    Google Scholar 

  • Atiaga, O., Nunes, L. M., & Otero, X. L. (2020). Effect of cooking on arsenic concentration in rice. Environmental Science and Pollution Research, 27(10), 10757–10765.

    CAS  Google Scholar 

  • Bae, M., Watanabe, C., Inaoka, T., Sekiyama, M., Sudo, N., Bokul, M. H., & Ohtsuka, R. (2002). Arsenic in cooked rice in Bangladesh. The Lancet, 360(9348), 1839–1840.

    CAS  Google Scholar 

  • Bae, S., Kamynina, E., Guetterman, H. M., Farinola, A. F., Caudill, M. A., Berry, R. J., Cassano, P. A., & Stover, P. J. (2021). Provision of folic acid for reducing arsenic toxicity in arsenic‐exposed children and adults. Cochrane Database of Systematic Reviews, (10).

  • Bhutta, Z. A., & Haider, B. A. (2009). Prenatal micronutrient supplementation: Are we there yet? CMAJ, 180(12), 1188–1189.

    Google Scholar 

  • Bist, V., Anand, V., Srivastava, S., Kaur, J., Naseem, M., Mishra, S., Srivastava, P. K., Tripathi, R. D., & Srivastava, S. (2022). Alleviative mechanisms of silicon solubilizing Bacillus amyloliquefaciens mediated diminution of arsenic toxicity in rice. Journal of Hazardous Materials, 428, 128170.

    CAS  Google Scholar 

  • Black, R. E., Allen, L. H., Bhutta, Z. A., Caulfield, L. E., De Onis, M., Ezzati, M., Mathers, C., & Rivera, J. (2008). Maternal and child undernutrition: Global and regional exposures and health consequences. The Lancet, 371(9608), 243–260.

    Google Scholar 

  • Bounphanousay, C. (2007). Use of phenotypic characters and DNA profiling for classification of the genetic diversity in black glutinous rice of the Lao PDR. Khon Kaen University.

    Google Scholar 

  • Carey, M., Meharg, C., Williams, P., Marwa, E., Jiujin, X., Farias, J. G., De Silva, P. M. C. S., Signes-Pastor, A., Lu, Y., Nicoloso, F. T., Savage, L., Campbell, K., Elliott, C., Adomako, E., Green, A. J., Moreno-Jiménez, E., Carbonell-Barrachina, A. A., Triwardhani, E. A., Pandiangan, F. I., … Meharg, A. A. (2020). Global sourcing of low-inorganic arsenic rice grain. Exposure and Health, 12(4), 711–719.

    Google Scholar 

  • Carignan, C. C., Cottingham, K. L., Jackson, B. P., Farzan, S. F., Gandolfi, A. J., Punshon, T., Folt, C. L., & Karagas, M. R. (2015). Estimated exposure to arsenic in breastfed and formula-fed infants in a United States cohort. Environmental Health Perspectives, 123(5), 500–506.

    Google Scholar 

  • Chakraborti, D., Rahman, M. M., Ahamed, S., Dutta, R. N., Pati, S., & Mukherjee, S. C. (2016). Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India. Chemosphere, 152, 520–529.

    CAS  Google Scholar 

  • Chauhan, R., Awasthi, S., Srivastava, S., Dwivedi, S., Pilon-Smits, E. A., Dhankher, O. P., & Tripathi, R. D. (2019). Understanding selenium metabolism in plants and its role as a beneficial element. Critical Reviews in Environmental Science and Technology, 49(21), 1937–1958.

    CAS  Google Scholar 

  • Chen, G., Lai, B., Chen, T., Lin, H., & Mao, X. (2021). Brief soaking at above-gelatinization temperature reduces inorganic arsenic in cooked rice. Cereal Chemistry, 98(1), 144–153.

    CAS  Google Scholar 

  • Choi, J., Chang, J. Y., Hong, J., Shin, S., Park, J. S., & Oh, S. (2017). Low-level toxic metal exposure in healthy weaning-age infants: Association with growth, dietary intake, and iron deficiency. International Journal of Environmental Research and Public Health, 14(4), 388.

    Google Scholar 

  • Chowdhury, N. R., Das, A., Joardar, M., De, A., Mridha, D., Das, R., Rahman, M. M., & Roychowdhury, T. (2020). Flow of arsenic between rice grain and water: Its interaction, accumulation and distribution in different fractions of cooked rice. Science of the Total Environment, 731, 138937.

    CAS  Google Scholar 

  • Codex Alimentarius (Codex). (2014). Report of the 19th Session of the Coordinating Committee For Asia. REP15/ASIA. In: Joint FAO/WHO Food Standards Programme FAO/WHO Coordinating Committee for Asia, 19th session. November 3–7, Tokyo, Japan. Codex Alimentarius, Rome, Italy.

  • Dwivedi, S., Kumar, A., Mishra, S., Sharma, P., Sinam, G., Bahadur, L., Goyal, V., Jain, N., & Tripathi, R. D. (2020). Orthosilicic acid (OSA) reduced grain arsenic accumulation and enhanced yield by modulating the level of trace element, antioxidants, and thiols in rice. Environmental Science and Pollution Research, 27(19), 24025–24038.

    CAS  Google Scholar 

  • Dwivedi, S., Tripathi, R. D., Srivastava, S., Singh, R., Kumar, A., Tripathi, P., Dave, R., Rai, U. N., Chakrabarty, D., Trivedi, P. K., Tuli, R., Adhikari, B., & Bag, M. K. (2010). Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. Protoplasma, 245(1), 113–124.

    CAS  Google Scholar 

  • European Commission (EC). (2015). Commission Regulation 2015/1006 of 25 June 2015 amending regulation (EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. Retrieved August 30, 2022, from https://mobil.bfr.bund.de/cm/349/supplement-eu-maximum-levels-for-inorganic-arsen-in-rice-and-rice-products.pdf

  • FAOSTAT. (2015). Retrieved September 4, 2022, from https://www.helgilibrary.com/indicators/rice-consumption-per-capita/

  • Farrow, E. M., Wang, J., Burken, J. G., Shi, H., Yan, W., Yang, J., Hua, B., & Deng, B. (2015). Reducing arsenic accumulation in rice grain through iron oxide amendment. Ecotoxicology and Environmental Safety, 118, 55–61.

    CAS  Google Scholar 

  • Farzan, S. F., Karagas, M. R., & Chen, Y. (2013). In utero and early life arsenic exposure in relation to long-term health and disease. Toxicology and Applied Pharmacology, 272(2), 384–390.

    CAS  Google Scholar 

  • Farzan, S. F., Li, Z., Korrick, S. A., Spiegelman, D., Enelow, R., Nadeau, K., Baker, E., & Karagas, M. R. (2016). Infant infections and respiratory symptoms in relation to in utero arsenic exposure in a US cohort. Environmental Health Perspectives, 124(6), 840–847.

    CAS  Google Scholar 

  • Fattal-Valevski, A. (2011). Thiamine (vitamin B1). Journal of Evidence-Based Complementary & Alternative Medicine, 16(1), 12–20.

    CAS  Google Scholar 

  • Fitzgerald, M. (2007). Screening the International Rice Genebank Collection for Variation in Carotenoid Content Harvestplus and IRRI. p 5.

  • Fukagawa, N. K., & Ziska, L. H. (2019). Rice: Importance for global nutrition. Journal of Nutritional Science and Vitaminology, 65(Supplement), S2–S3.

    Google Scholar 

  • Ghosh, S., Datta, K., & Datta, S. K. (2019). Rice vitamins. In: Bao, J. (Ed.), Rice. AACC International Press, 195–220.

  • Gray, P. J., Conklin, S. D., Todorov, T. I., & Kasko, S. M. (2016). Cooking rice in excess water reduces both arsenic and enriched vitamins in the cooked grain. Food Additives & Contaminants: Part A, 33(1), 78–85.

    CAS  Google Scholar 

  • Gregorio, G. B., Senadhira, D., & Htut, T. (1999). Improving iron and zinc value of rice for human nutrition.

  • Halder, D., Biswas, A., Šlejkovec, Z., Chatterjee, D., Nriagu, J., Jacks, G., & Bhattacharya, P. (2014). Arsenic species in raw and cooked rice: Implications for human health in rural Bengal. Science of the Total Environment, 497, 200–208.

    Google Scholar 

  • Hamadani, J. D., Tofail, F., Nermell, B., Gardner, R., Shiraji, S., Bottai, M., Arifeen, S. E., Huda, S. N., & Vahter, M. (2011). Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: A population-based cohort study. International Journal of Epidemiology, 40(6), 1593–1604.

    CAS  Google Scholar 

  • Han, Z., Salawu, O. A., Zenobio, J. E., Zhao, Y., & Adeleye, A. S. (2021). Emerging investigator series: Immobilization of arsenic in soil by nanoscale zerovalent iron: Role of sulfidation and application of machine learning. Environmental Science: Nano, 8(3), 619–633.

    CAS  Google Scholar 

  • Heck, J. E., Nieves, J. W., Chen, Y., Parvez, F., Brandt-Rauf, P. W., Graziano, J. H., Slavkovich, V., Howe, G. R., & Ahsan, H. (2009). Dietary intake of methionine, cysteine, and protein and urinary arsenic excretion in Bangladesh. Environmental Health Perspectives, 117(1), 99–104.

    CAS  Google Scholar 

  • Hotz, C., & Brown, K. H. (2004). Assessment of the risk of zinc deficiency in populations and options for its control.

  • Islam, M. R., Islam, S., Jahiruddin, M., & Islam, M. A. (2004). Effects of irrigation water arsenic in the rice-rice cropping system. Journal of Biological Sciences, 4(4), 542–546.

    Google Scholar 

  • Jackson, B. P., Taylor, V. F., Punshon, T., & Cottingham, K. L. (2012). Arsenic concentration and speciation in infant formulas and first foods. Pure and Applied Chemistry, 84(2), 215–223.

    CAS  Google Scholar 

  • Jiang, C. B., Hsi, H. C., Fan, C. H., & Chien, L. C. (2014). Fetal exposure to environmental neurotoxins in Taiwan. PLoS ONE, 9(10), e109984.

    Google Scholar 

  • Joardar, M., Das, A., Mridha, D., De, A., Chowdhury, N. R., & Roychowdhury, T. (2020). Evaluation of acute and chronic arsenic exposure on school children from exposed and apparently control areas of West Bengal, India. Exposure and Health, 13, 33–50.

    Google Scholar 

  • Joardar, M., Mukherjee, P., Das, A., Mridha, D., De, A., Chowdhury, N. R., Majumder, S., Ghosh, S., Das, J., Alam, M. R., & Rahman, M. M. (2023). Different levels of arsenic exposure through cooked rice and its associated benefit-risk assessment from rural and urban populations of West Bengal, India: A probabilistic approach with sensitivity analysis. Environmental Science and Pollution Research, 30(27), 70950–70973.

    CAS  Google Scholar 

  • Joint, F. A. O., & W. H. O. Expert Committee on Food Additives. (2011). Evaluation of certain contaminants in food: Seventy-second [72nd] report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization.

  • Kaushal, A., Zhang, H., Karmaus, W. J., Everson, T. M., Marsit, C. J., Karagas, M. R., Tsai, S. F., Wen, H. J., & Wang, S. L. (2017). Genome-wide DNA methylation at birth in relation to in utero arsenic exposure and the associated health in later life. Environmental Health, 16(1), 1–11.

    Google Scholar 

  • Kuo, C. C., Su, P. H., Sun, C. W., Liu, H. J., Chang, C. L., & Wang, S. L. (2018). Early-life arsenic exposure promotes atherogenic lipid metabolism in adolescence: A 15-year birth cohort follow-up study in central Taiwan. Environment International, 118, 97–105.

    CAS  Google Scholar 

  • Li, B., Zhou, S., Wei, D., Long, J., Peng, L., Tie, B., Williams, P. N., & Lei, M. (2019). Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO2: Pot experiment and field application. Science of the Total Environment, 650, 546–556.

    CAS  Google Scholar 

  • Li, X., Yadav, R., & Siddique, K. H. (2020). Neglected and underutilized crop species: The key to improving dietary diversity and fighting hunger and malnutrition in Asia and the Pacific. Frontiers in Nutrition, 7, 593711.

    Google Scholar 

  • Liao, C. M., Lin, T. L., Hsieh, N. H., & Chen, W. Y. (2010). Assessing the arsenic-contaminated rice (Oryza sativa) associated children skin lesions. Journal of Hazardous Materials, 176(1–3), 239–251.

    CAS  Google Scholar 

  • Liew, S. C. (2016). Folic acid and diseases-supplement it or not? Revista Da Associacao Medica Brasileira, 62, 90–100.

    Google Scholar 

  • Lule, V. K., Garg, S., Gosewade, S. C., Tomar, S. K., & Khedkar, C. D. (2016). Niacin. Encyclopedia of Food and Health, 63–72.

  • Magnani, R., Oot, L., Sethuraman, K., Kabir, G., & Rahman, S. (2015). USAID office of food for peace food security country framework for Bangladesh (FY 2015–2019) (p. 360). FHI.

    Google Scholar 

  • Mandal, U., Singh, P., Kundu, A. K., Chatterjee, D., Nriagu, J., & Bhowmick, S. (2019). Arsenic retention in cooked rice: Effects of rice type, cooking water, and indigenous cooking methods in West Bengal, India. Science of the Total Environment, 648, 720–727.

    CAS  Google Scholar 

  • Mason, J., Bailes, A., Beda-Andourou, M., Copeland, N., Curtis, T., Deitchler, M., Foster, L., Hensley, M., Horjus, P., Johnson, C., Lloren, T., Mendez, A., Munoz, M., Rivers, J., & Vance, G. (2005). Recent trends in malnutrition in developing regions: Vitamin A deficiency, anemia, iodine deficiency, and child underweight. Food and Nutrition Bulletin, 26(1), 59–108.

    Google Scholar 

  • Meharg, A. A., & Rahman, M. M. (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science & Technology, 37(2), 229–234.

    CAS  Google Scholar 

  • Meharg, A. A., Lombi, E., Williams, P. N., Scheckel, K. G., Feldmann, J., Raab, A., Zhu, Y., & Islam, R. (2008). Speciation and localization of arsenic in white and brown rice grains. Environmental Science & Technology, 42(4), 1051–1057.

    CAS  Google Scholar 

  • Meharg, A. A., Williams, P. N., Adomako, E., Lawgali, Y. Y., Deacon, C., Villada, A., Cambell, R. C., Sun, G., Zhu, Y. G., Feldmann, J., Raab, A., Zhao, F. J., Islam, R., Hossain, S., & Yanai, J. (2009). Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental Science & Technology, 43(5), 1612–1617.

    CAS  Google Scholar 

  • Menon, M., Dong, W., Chen, X., Hufton, J., & Rhodes, E. J. (2021). Improved rice cooking approach to maximise arsenic removal while preserving nutrient elements. Science of the Total Environment, 755, 143341.

    CAS  Google Scholar 

  • Mihucz, V. G., Silversmit, G., Szalóki, I., De Samber, B., Schoonjans, T., Tatár, E., Vincze, L., Virág, I., Yao, J., & Záray, G. (2010). Removal of some elements from washed and cooked rice studied by inductively coupled plasma mass spectrometry and synchrotron based confocal micro-X-ray fluorescence. Food Chemistry, 121(1), 290–297.

    CAS  Google Scholar 

  • Mihucz, V. G., Virág, I., Zang, C., Jao, Y., & Záray, G. (2007). Arsenic removal from rice by washing and cooking with water. Food Chemistry, 105(4), 1718–1725.

    CAS  Google Scholar 

  • Ministry of Health (MoH) and UNICEF. (2006). Multiple Indicator Cluster Survey (MICS) 3. “Children and women nutritional status.” Retrieved September 4 2022, from http://www.foodsecurityatlas.org/lao/-country/utilization/childrens-women-nutritional-status

  • Mridha, D., Gorain, P. C., Joardar, M., Das, A., Majumder, S., De, A., Chowdhury, N. R., Lama, U., Pal, R., & Roychowdhury, T. (2022). Rice grain arsenic and nutritional content during post harvesting to cooking: A review on arsenic bioavailability and bioaccessibility in humans. Food Research International, 154, 111042.

    CAS  Google Scholar 

  • Mukherjee, A., Kundu, M., Basu, B., Sinha, B., Chatterjee, M., Bairagya, M. D., Singh, U. K., & Sarkar, S. (2017). Arsenic load in rice ecosystem and its mitigation through deficit irrigation. Journal of Environmental Management, 197, 89–95.

    CAS  Google Scholar 

  • Mwale, T., Rahman, M. M., & Mondal, D. (2018). Risk and benefit of different cooking methods on essential elements and arsenic in rice. International Journal of Environmental Research and Public Health, 15(6), 1056.

    Google Scholar 

  • Naito, S., Matsumoto, E., Shindoh, K., & Nishimura, T. (2015). Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan. Food Chemistry, 168, 294–301.

    CAS  Google Scholar 

  • Norton, G. J., Travis, A. J., Danku, J. M., Salt, D. E., Hossain, M., Islam, M. R., & Price, A. H. (2017). Biomass and elemental concentrations of 22 rice cultivars grown under alternate wetting and drying conditions at three field sites in Bangladesh. Food and Energy Security, 6(3), 98–112.

    Google Scholar 

  • O’Neill, A., Phillips, D. H., Kok, S., Chea, E., Seng, B., & Gupta, B. S. (2013). Arsenic in groundwater and its influence on exposure risks through traditionally cooked rice in Prey Veng Province, Cambodia. Journal of Hazardous Materials, 262, 1072–1079.

    Google Scholar 

  • Papademetriou, M. K., Dent, F. J., & Herath, E. M. (Eds.). (2000). Bridging the rice yield gap in the Asia-Pacific Region (p. 222). Bangkok, Thailand: FAO Regional Office for Asia and the Pacific.

  • Pedron, T., Segura, F. R., Paniz, F. P., de Moura Souza, F., dos Santos, M. C., de Magalhães Júnior, A. M., & Batista, B. L. (2019). Mitigation of arsenic in rice grains by polishing and washing: Evidencing the benefit and the cost. Journal of Cereal Science, 87, 52–58.

    CAS  Google Scholar 

  • Pogoson, E., Carey, M., Meharg, C., & Meharg, A. A. (2021). Reducing the cadmium, inorganic arsenic and dimethylarsinic acid content of rice through food-safe chemical cooking pre-treatment. Food Chemistry, 338, 127842.

    CAS  Google Scholar 

  • Prasad, A. S. (2003). Zinc deficiency: Has been known of for 40 years but ignored by global health organisations. BMJ, 326(7386), 409–410.

    Google Scholar 

  • Prasad, A. S. (2014). Impact of the discovery of human zinc deficiency on health. Journal of Trace Elements in Medicine and Biology.

  • Prasad, A. S., Schulert, A. R., Miale, A., Jr., Farid, Z., & Sandstead, H. H. (1963). Zinc and iron deficiencies in male subjects with dwarfism and hypogonadism but without ancylostomiasis, schistosomiasis or severe anemia. The American Journal of Clinical Nutrition, 12(6), 437–444.

    CAS  Google Scholar 

  • Promchan, J., Günther, D., Siripinyanond, A., & Shiowatana, J. (2016). Elemental imaging and classifying rice grains by using laser ablation inductively coupled plasma mass spectrometry and linear discriminant analysis. Journal of Cereal Science, 71, 198–203.

    CAS  Google Scholar 

  • Raab, A., Baskaran, C., Feldmann, J., & Meharg, A. A. (2009). Cooking rice in a high water to rice ratio reduces inorganic arsenic content. Journal of Environmental Monitoring, 11(1), 41–44.

    CAS  Google Scholar 

  • Rahaman, S., & Sinha, A. C. (2013). Water regimes: An approach of mitigation arsenic in summer rice (Oryza sativa L.) under different topo sequences on arsenic-contaminated soils of Bengal delta. Paddy and Water Environment, 11(1), 397–410.

    Google Scholar 

  • Rahman, H., Carey, M., Hossain, M., Savage, L., Islam, M. R., & Meharg, A. A. (2019). Modifying the parboiling of rice to remove inorganic arsenic, while fortifying with calcium. Environmental Science and Technology, 53(9), 5249–5255.

    CAS  Google Scholar 

  • Rahman, M. A., Hasegawa, H., Rahman, M. M., Rahman, M. A., & Miah, M. A. M. (2007). Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere, 69(6), 942–948.

    CAS  Google Scholar 

  • Rodríguez-Barranco, M., Gil, F., Hernández, A. F., Alguacil, J., Lorca, A., Mendoza, R., Gómez, I., Molina-Villalba, I., González-Alzaga, B., Aguilar-Garduño, C., Rohlman, D. S., & Lacasaña, M. (2016). Postnatal arsenic exposure and attention impairment in school children. Cortex, 74, 370–382.

    Google Scholar 

  • Rohman, A., Helmiyati, S., Hapsari, M., & LarasatiSetyaningrum, D. (2014). Rice in health and nutrition. International Food Research Journal21(1).

  • Rosado, J. L., Ronquillo, D., Kordas, K., Rojas, O., Alatorre, J., Lopez, P., Garcia-Vargas, G., del Carmen Caamaño, M., Cebrián, M. E., & Stoltzfus, R. J. (2007). Arsenic exposure and cognitive performance in Mexican school children. Environmental Health Perspectives, 115(9), 1371–1375.

    CAS  Google Scholar 

  • Saha, K. K., Engström, A., Hamadani, J. D., Tofail, F., Rasmussen, K. M., & Vahter, M. (2012). Pre-and postnatal arsenic exposure and body size to 2 years of age: A cohort study in rural Bangladesh. Environmental Health Perspectives, 120(8), 1208–1214.

    CAS  Google Scholar 

  • Sanchez, T. R., Perzanowski, M., & Graziano, J. H. (2016). Inorganic arsenic and respiratory health, from early life exposure to sex-specific effects: A systematic review. Environmental Research, 147, 537–555.

    CAS  Google Scholar 

  • Senanayake, N., & Mukherji, A. (2014). Irrigating with arsenic contaminated groundwater in West Bengal and Bangladesh: A review of interventions for mitigating adverse health and crop outcomes. Agricultural Water Management, 135, 90–99.

    Google Scholar 

  • Sharafi, K., Yunesian, M., Mahvi, A. H., Pirsaheb, M., Nazmara, S., & Nodehi, R. N. (2019). Advantages and disadvantages of different pre-cooking and cooking methods in removal of essential and toxic metals from various rice types-human health risk assessment in Tehran households. Iran. Ecotoxicology and Environmental Safety, 175, 128–137.

    CAS  Google Scholar 

  • Shaw, J. G., & Friedman, J. F. (2011). Iron deficiency anemia: Focus on infectious diseases in lesser developed countries. Anemia.

  • Shrivastava, A., Barla, A., Singh, S., Mandraha, S., & Bose, S. (2017). Arsenic contamination in agricultural soils of Bengal deltaic region of West Bengal and its higher assimilation in monsoon rice. Journal of Hazardous Materials, 324, 526–534.

    CAS  Google Scholar 

  • Signes, A., Mitra, K., Burló, F., & Carbonell-Barrachina, A. A. (2008). Effect of two different rice dehusking procedures on total arsenic concentration in rice. European Food Research and Technology, 226, 561–567.

    CAS  Google Scholar 

  • Signes-Pastor, A. J., Carey, M., & Meharg, A. A. (2016). Inorganic arsenic in rice-based products for infants and young children. Food Chemistry, 191, 128–134.

    CAS  Google Scholar 

  • Signes-Pastor, A. J., Woodside, J. V., McMullan, P., Mullan, K., Carey, M., Karagas, M. R., & Meharg, A. A. (2017). Levels of infants’ urinary arsenic metabolites related to formula feeding and weaning with rice products exceeding the EU inorganic arsenic standard. PLoS ONE, 12(5), e0176923.

    Google Scholar 

  • Smith, A. H., Marshall, G., Liaw, J., Yuan, Y., Ferreccio, C., & Steinmaus, C. (2012). Mortality in young adults following in utero and childhood exposure to arsenic in drinking water. Environmental Health Perspectives, 120(11), 1527–1531.

    CAS  Google Scholar 

  • Srivastava, S., Pathare, V. S., Sounderajan, S., & Suprasanna, P. (2019). Nitrogen supply influences arsenic accumulation and stress responses of rice (Oryza sativa L.) seedlings. Journal of Hazardous Materials, 367, 599–606.

    CAS  Google Scholar 

  • Tamura, T., & Goldenberg, R. L. (1996). Zinc nutriture and pregnancy outcome. Nutrition Research, 16(1), 139–181.

    CAS  Google Scholar 

  • Tanaka, H., Tsukuma, H., & Oshima, A. (2010). Long-term prospective study of 6104 survivors of arsenic poisoning during infancy due to contaminated milk powder in 1955. Journal of Epidemiology, 20(6), 439–445.

    Google Scholar 

  • Tripathi, R. D., Kumar, A., Dwivedi, S., Chauhan, R., Tripathi, P., Adhikari, B., Dhara, M. C., & Nautiyal, C. S. (2015). Characterization of rice germplasms for sufficient selenium and low arsenic accumulation in grains. International Journal of Plant and Environment, 1(01), 31–42.

    Google Scholar 

  • Upadhyay, M. K., Majumdar, A., Suresh Kumar, J., & Srivastava, S. (2020). Arsenic in rice agro-ecosystem: Solutions for safe and sustainable rice production. Frontiers in Sustainable Food Systems, 4, 53.

    Google Scholar 

  • Vahter, M. (2009). Effects of arsenic on maternal and fetal health. Annual Review of Nutrition, 29, 381–399.

    CAS  Google Scholar 

  • Wang, L., Gao, S., Yin, X., Yu, X., & Luan, L. (2019). Arsenic accumulation, distribution and source analysis of rice in a typical growing area in North China. Ecotoxicology and Environmental Safety, 167, 429–434.

    CAS  Google Scholar 

  • West, K. P., Jr. (2002). Extent of vitamin A deficiency among preschool children and women of reproductive age. The Journal of Nutrition, 132(9), 2857S-2866S.

    CAS  Google Scholar 

  • WHO. (2008). Worldwide prevalence of anaemia 1993–2005.

  • WHO. (2021). Global anaemia estimates, Edition Global anaemia estimates in women of reproductive age, by pregnancy status, and in children aged 6–59 months.

  • Williams, P. N., Lei, M., Sun, G., Huang, Q., Lu, Y., Deacon, C., Meharg, A. A., & Zhu, Y. G. (2009a). Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environmental Science & Technology, 43(3), 637–642.

    CAS  Google Scholar 

  • Williams, P. N., Lombi, E., Sun, G. X., Scheckel, K., Zhu, Y. G., Feng, X., Zhu, J., Carey, A. M., Adomako, E., Lawgali, Y., Deacon, C., & Meharg, A. A. (2009b). Selenium characterization in the global rice supply chain. Environmental Science & Technology, 43(15), 6024–6030.

    CAS  Google Scholar 

  • Williams, P. N., Price, A. H., Raab, A., Hossain, S. A., Feldmann, J., & Meharg, A. A. (2005). Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environmental Science & Technology, 39(15), 5531–5540.

    CAS  Google Scholar 

  • World Health Organization. (2002). The World Health Report: reducing risks, promoting healthy life. Geneva: WHO.

  • Xu, X. Y., McGrath, S. P., Meharg, A. A., & Zhao, F. J. (2008). Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science & Technology, 42(15), 5574–5579.

    CAS  Google Scholar 

  • Yan, S., Wu, F., Zhou, S., Yang, J., Tang, X., & Ye, W. (2021). Zinc oxide nanoparticles alleviate the arsenic toxicity and decrease the accumulation of arsenic in rice (Oryza sativa L.). BMC Plant Biology, 21(1), 1–11.

    Google Scholar 

  • Yorifuji, T., Kato, T., Ohta, H., Bellinger, D. C., Matsuoka, K., & Grandjean, P. (2016). Neurological and neuropsychological functions in adults with a history of developmental arsenic poisoning from contaminated milk powder. Neurotoxicology and Teratology, 53, 75–80.

    CAS  Google Scholar 

  • Yuan, Y., Marshall, G., Ferreccio, C., Steinmaus, C., Selvin, S., Liaw, J., Bates, M. N., & Smith, A. H. (2007). Acute myocardial infarction mortality in comparison with lung and bladder cancer mortality in arsenic-exposed region II of Chile from 1950 to 2000. American Journal of Epidemiology, 166(12), 1381–1391.

    Google Scholar 

  • Zavala, Y. J., Gerads, R., Gürleyük, H., & Duxbury, J. M. (2008). Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health. Environmental Science & Technology, 42(10), 3861–3866.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director, CSIR-National Botanical Research Institute, Lucknow, for providing the infrastructure and laboratory facilities. SEED-DST, New Delhi, is acknowledged for the project grant (SEED/TIASN/2018/74). SD is thankful to AcSIR, New Delhi, for providing the opportunity to teach Ph.D. students enrolled in AcSIR. The financial support by the Uttar Pradesh Council of Science and Technology (UP-CST) and Council of Scientific and Industrial Research (MLP-0040) are also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Seema Mishra and Sanjay Dwivedi conceptualized the manuscript; Apoorv Gupta collected the relevant data for summarizing the studies; Ravi Kumar Tiwari prepared the graphics for the manuscript; Sanjay Dwivedi and Apoorv Gupta wrote the first draft; Seema Mishra critically revised the manuscript and provided intellectual input; Ruchi Agnihotri and Kalpana Padalia helped during revision of MS by collecting the data and calculating contribution to RDI of nutrients. All the authors read the manuscript carefully and gave final approval for publication of manuscript.

Corresponding authors

Correspondence to Seema Mishra or Sanjay Dwivedi.

Ethics declarations

Ethics approval

All authors have read, understood, and complied as applicable with the statement on “ethical responsibilities of authors.” The manuscript number CSIR-NBRI_MS/2022/05/07 was allocated by the Institutional Ethics Committee after subjecting the MS through ethical and plagiarism checks.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Post-harvest treatments curtail a significant amount of arsenic from rice grain.

• The nutritional profile of rice was also compromised during post-harvest treatments.

• These methods may be used for the production of rice-based infant foods.

• Supplementation of nutrients can be used to fulfill their daily requirement.

• Alternate arsenic removal methods must be explored for the retension of nutrients.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 172 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Tiwari, R.K., Agnihotri, R. et al. A critical analysis of various post-harvest arsenic removal treatments of rice and their impact on public health due to nutrient loss. Environ Monit Assess 195, 1073 (2023). https://doi.org/10.1007/s10661-023-11669-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11669-w

Keywords

Navigation