Skip to main content

Advertisement

Log in

A systematic review on the bioremediation of metal contaminated soils using biochar and slag: current status and future outlook

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Heavy metals contaminated soils are posing severe threats to food safety worldwide. Heavy metals absorbed by plant roots from contaminated soils lead to severe plant development issues and a reduction in crop yield and growth. The global population is growing, and the demand for food is increasing. Therefore, it is critical to identify soil remediation strategies that are efficient, economical, and environment friendly. The use of biochar and slag as passivators represents a promising approach among various physicochemical and biological strategies due to their efficiency, cost-effectiveness, and low environmental impact. These passivators employ diverse mechanisms to reduce the bioavailability of metals in contaminated soils, thereby improving crop growth and productivity. Although studies have shown the effectiveness of different passivators, further research is needed globally as this field is still in its early stages. This review sheds light on the innovative utilization of biochar and slag as sustainable strategies for heavy metal remediation, emphasizing their novelty and potential for practical applications. Based on the findings, research gaps have been identified and future research directions proposed to enable the full potential of passivators to be utilized effectively and efficiently under controlled and field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

It is important to note that all the data and tools used in this work are available to the public.

References

  • Addai, M. K. (2014). Removal and recovery of heavy metals by nickel smelter slag. The University of Western Ontario London http://ir.lib.uwo.ca/etd/1861

    Google Scholar 

  • Agegnehu, G., Bass, A. M., Nelson, P. N., Muirhead, B., Wright, G., & Bird, M. I. (2015). Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agriculture, Ecosystems & Environment, 213, 72–85.

    Article  CAS  Google Scholar 

  • Ahmad, I., Tahir, M., Daraz, U., Ditta, A., Hussain, M. B., & Khan, Z. U. H. (2020). 14 Responses and Tolerance of Cereal Crops to Metal and Metalloid Toxicity. Agronomic Crops: Volume 3. In Stress Responses and Tolerance (pp. 235–264). Singapore: Springer.

  • Ahmad, M., Ok, Y. S., Rajapaksha, A. U., Lim, J. E., Kim, B. Y., Ahn, J. H., et al. (2016). Lead and copper immobilization in a shooting range soil using soybean Stover-and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. Journal of Hazardous Materials, 301, 179–186.

    Article  CAS  Google Scholar 

  • Ahmed, W., Mehmood, S., Qaswar, M., Ali, S., Khan, Z. H., Ying, H., et al. (2021). Oxidized biochar obtained from rice straw as adsorbent to remove uranium (VI) from aqueous solutions. Journal of Environmental Chemical Engineering, 9(2), 105104.

    Article  CAS  Google Scholar 

  • Ajayi, A. E., Holthusen, D., & Horn, R. (2016). Changes in microstructural behaviour and hydraulic functions of biochar amended soils. Soil and Tillage Research, 155, 166–175.

    Article  Google Scholar 

  • Arthur, E., Tuller, M., Moldrup, P., & De Jonge, L. W. (2015). Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil. Geoderma, 243, 175–182.

    Article  Google Scholar 

  • Baiamonte, G., De Pasquale, C., Marsala, V., Cimò, G., Alonzo, G., Crescimanno, G., & Conte, P. (2015). Structure alteration of a sandy-clay soil by biochar amendments. Journal of Soils and Sediments, 15(4), 816–824.

    Article  CAS  Google Scholar 

  • Banza, A. N., Gock, E., & Kongolo, K. (2002). Base metals recovery from copper smelter slag by oxidising leaching and solvent extraction. Hydrometallurgy, 67(1-3), 63–69.

    Article  CAS  Google Scholar 

  • Bashir, S., Salam, A., Chhajro, M. A., Fu, Q., Khan, M. J., Zhu, J., et al. (2018). Comparative efficiency of rice husk-derived biochar (RHB) and steel slag (SS) on cadmium (cd) mobility and its uptake by Chinese cabbage in highly contaminated soil. International Journal of Phytoremediation, 20(12), 1221–1228.

    Article  CAS  Google Scholar 

  • Bashir, S., Zhu, J., Fu, Q., & Hu, H. (2018). Cadmium mobility, uptake, and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite, and rock phosphate as amendments. Chemosphere, 194, 579–587.

    Article  CAS  Google Scholar 

  • Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R., & Westgate, M. (2013). Assessing potential of biochar for increasing the water-holding capacity of sandy soils. GCB Bioenergy, 5(2), 132–143.

    Article  CAS  Google Scholar 

  • Bert, V., Lors, C., Ponge, J. F., Caron, L., Biaz, A., Dazy, M., & Masfaraud, J. F. (2012). Metal immobilization and soil amendment efficiency at a contaminated sediment landfill site: A field study focusing on plants, springtails, and bacteria. Environmental Pollution, 169, 1–11.

    Article  CAS  Google Scholar 

  • Bes, C., & Mench, M. (2008). Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation. Environmental Pollution, 156(3), 1128–1138.

    Article  CAS  Google Scholar 

  • Bian, R., Li, L., Bao, D., Zheng, J., Zhang, X., Zheng, J., et al. (2016). Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. Environmental Science and Pollution Research, 23(10), 10028–10036.

    Article  CAS  Google Scholar 

  • Blanco-Canqui, H. (2017). Biochar and soil physical properties. Soil Science Society of America Journal, 81(4), 687–711.

    Article  CAS  Google Scholar 

  • Brantley, K. E., Brye, K. R., Savin, M. C., & Longer, D. E. (2015). Biochar source and application rate effects on soil water retention determined using wetting curves. Open Journal of Soil Science, 5(1), 1.

    Article  Google Scholar 

  • Bruun, E. W., Petersen, C. T., Hansen, E., Holm, J. K., & Hauggaard-Nielsen, H. (2014). Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use and Management, 30(1), 109–118.

    Article  Google Scholar 

  • Castellini, M., Giglio, L., Niedda, M., Palumbo, A. D., & Ventrella, D. (2015). Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil and Tillage Research, 154, 1–13.

    Article  Google Scholar 

  • Chagas, J. K. M., de Figueiredo, C. C., da Silva, J., & Paz-Ferreiro, J. (2021). The residual effect of sewage sludge biochar on soil availability and bioaccumulation of heavy metals: Evidence from a three-year field experiment. Journal of Environmental Management, 279, 111824.

    Article  CAS  Google Scholar 

  • Chowdhury, S. R., Yanful, E. K., & Pratt, A. R. (2014). Recycling of nickel smelter slag for arsenic remediation—An experimental study. Environmental Science and Pollution Research, 21, 10096–10107.

    Article  CAS  Google Scholar 

  • Conte, P., Hanke, U. M., Marsala, V., Cimò, G., Alonzo, G., & Glaser, B. (2014). Mechanisms of water interaction with pore systems of hydrochar and pyrochar from poplar forestry waste. Journal of Agricultural and Food Chemistry, 62(21), 4917–4923.

    Article  CAS  Google Scholar 

  • Cornelissen, G., Martinsen, V., Shitumbanuma, V., Alling, V., Breedveld, G. D., Rutherford, D. W., et al. (2013). Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy, 3(2), 256–274.

    Article  Google Scholar 

  • Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: Structure, properties, reactions, occurrences and uses. Wiley-VCH.

    Book  Google Scholar 

  • Crusciol, C. A., Artigiani, A. C., Arf, O., Carmeis Filho, A. C., Soratto, R. P., Nascente, A. S., & Alvarez, R. C. (2016). Soil fertility, plant nutrition, and grain yield of upland rice affected by surface application of lime, silicate, and phosphogypsum in a tropical no-till system. Catena, 137, 87–99.

    Article  CAS  Google Scholar 

  • Das, S., Galgo, S. J., Alam, M. A., Lee, J. G., Hwang, H. Y., Lee, C. H., & Kim, P. J. (2022). Recycling of ferrous slag in agriculture: Potentials and challenges. Critical Reviews in Environmental Science and Technology, 52, 1247–1281.

    Article  Google Scholar 

  • Dixit, R., Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., et al. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7(2), 2189–2212.

    Article  Google Scholar 

  • Dzięcioł, J., & Radziemska, M. (2022). Blast furnace slag, post-industrial waste, or valuable building materials with remediation potential? Minerals, 12, 478.

    Article  Google Scholar 

  • Fan, Y., Li, Y., Li, H., & Cheng, F. (2018). Evaluating heavy metal accumulation and potential risks in soil-plant systems applied with magnesium slag-based fertilizer. Chemosphere, 197, 382–388.

    Article  CAS  Google Scholar 

  • Foster, E. J., Hansen, N., Wallenstein, M., & Cotrufo, M. F. (2016). Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agriculture, Ecosystems & Environment, 233, 404–414.

    Article  Google Scholar 

  • Francisca, F. M., & Glatstein, D. A. (2020). Environmental application of basic oxygen furnace slag for the removal of heavy metals from leachates. Journal of Hazardous Materials, 384, 121294.

    Article  CAS  Google Scholar 

  • Gu, H. H., Qiu, H., Tian, T., Zhan, S. S., Chaney, R. L., Wang, S. Z., et al. (2011). Mitigation effects of silicon-rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere, 83(9), 1234–1240.

    Article  CAS  Google Scholar 

  • Gwon, H. S., Khan, M. I., Alam, M. A., Das, S., & Kim, P. J. (2018). Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice (Oryza sativa L.). Journal of Hazardous Materials, 353, 236–243.

    Article  CAS  Google Scholar 

  • Han, H., Xue, J., Zhang, X., Wang, X., Huang, J., & Dai, X. (2023). Effect of carbide slag combined with biochar on improving acidic soil of copper sulfide mines. Sustainability, 15, 3206.

    Article  CAS  Google Scholar 

  • Hassan, O. A. B. (2011). Remediation of chromium-contaminated soil using blast furnace slag. International Journal of Sustainable Development and Planning, 6(1), 81–90.

    Article  Google Scholar 

  • He, H., Tam, N. F., Yao, A., Qiu, R., Li, W. C., & Ye, Z. (2017). Growth and cd uptake by rice (Oryza sativa) in acidic and cd-contaminated paddy soils amended with steel slag. Chemosphere, 189, 247–254.

    Article  CAS  Google Scholar 

  • He, H., Xiao, Q., Yuan, M., Huang, R., Sun, X., Wang, X., & Zhao, H. (2020). Effects of steel slag amendments on the accumulation of cadmium and arsenic by rice (Oryza sativa) in a historically contaminated paddy field. Environmental Science and Pollution Research, 27, 40001–40008.

    Article  CAS  Google Scholar 

  • He, R., Zhang, S., Zhang, X., Zhang, Z., Zhao, Y., & Ding, H. (2021). Copper slag: The leaching behavior of heavy metals and its applicability as a supplementary cementitious material. Journal of Environmental Chemical Engineering, 9(2), 105132.

    Article  CAS  Google Scholar 

  • Hwang, S. F., Strelkov, S. E., Gossen, B. D., Turnbull, G. D., Ahmed, H. U., & Manolii, V. P. (2011). Soil treatments and amendments for amelioration of clubroot of canola. Canadian Journal of Plant Science, 91(6), 999–1010.

    Article  CAS  Google Scholar 

  • IBI. (2015). Standardized product definition and product testing guidelines for biochar that is used in soil. https://www.biochar-international.org/sites/default/files/Guidelines_for_Biochar_That_Is_Used_in_Soil_Final.pdf. Accessed  21 Mar 2022

  • Ijaz, M., Rizwan, M. S., Sarfraz, M., Ul-Allah, S., Sher, A., Sattar, A., et al. (2020). Biochar reduced cadmium uptake and enhanced wheat productivity in alkaline contaminated soil. International Journal of Agriculture and Biology, 24, 1633–1640.

    CAS  Google Scholar 

  • Imtiaz, M., Ashraf, M., Rizwan, M. S., Nawaz, M. A., Rizwan, M., Mehmood, S., et al. (2018). Vanadium toxicity in chickpea (Cicer arietinum L.) grown in red soil: Effects on cell death, ROS and antioxidative systems. Ecotoxicology and Environmental Safety, 158, 139–144.

    Article  CAS  Google Scholar 

  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., et al. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406–433.

    Article  CAS  Google Scholar 

  • Irshad, S., Xie, Z., Mehmood, S., Nawaz, A., Ditta, A., & Mahmood, Q. (2021). Insights into conventional and recent technologies for arsenic bioremediation: A systematic review. Environmental Science and Pollution Research, 28, 18870–18892.

    Article  CAS  Google Scholar 

  • Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268.

    Article  CAS  Google Scholar 

  • Laukkanen, J., Takaluoma, E., Runtti, H., Mäkinen, J., Kauppila, T., Hellsten, S., Luukkonen, T., & Lassi, U. (2022). In situ remediation of metal (loid)-contaminated lake sediments with alkali-activated blast furnace slag granule amendment: A field experiment. Journal of Soils and Sediments, 22(3), 1054–1067.

    Article  CAS  Google Scholar 

  • Lee, S. S., Shah, H. S., Awad, Y. M., Kumar, S., & Ok, Y. S. (2015). Synergy effects of biochar and polyacrylamide on plant growth and soil erosion control. Environmental Earth Sciences, 74(3), 2463–2473.

    Article  CAS  Google Scholar 

  • LennTech. (2017). Heavy Metals - Lenntech. Heavy Met. n/a. https://www.lenntech.com/processes/heavy/heavy-metals/heavy-metals.htm. Accessed  21 Mar 2022

  • León-Romero, M. A., Soto-Ríos, P. C., Nomura, M., & Nishimura, O. (2018). Effect of steel slag to improve soil quality of tsunami-impacted land while reducing the risk of heavy metal bioaccumulation. Water, Air, & Soil Pollution, 229(1), 1–14.

    Article  Google Scholar 

  • Lim, J. W., Chew, L. H., Choong, T. S., Tezara, C., & Yazdi, M. H. (2016). Overview of steel slag application and utilization. In MATEC web of conferences (Vol. 74, p. 00026). EDP Sciences.

    Google Scholar 

  • Liu, G., Meng, J., Huang, Y., Dai, Z., Tang, C., & Xu, J. (2020). Effects of carbide slag, lodestone and biochar on the immobilization, plant uptake and translocation of as and cd in a contaminated paddy soil. Environmental Pollution, 266, 115194.

    Article  CAS  Google Scholar 

  • Liu, M., Tan, X., Zheng, M., Yu, D., Lin, A., Liu, J., et al. (2023). Modified biochar/humic substance/fertilizer compound soil conditioner for highly efficient improvement of soil fertility and heavy metals remediation in acidic soils. Journal of Environmental Management, 325, 116614.

    Article  CAS  Google Scholar 

  • Luan, J., Chai, M., & Li, R. (2016). Heavy metal migration and potential environmental risk assessment during the washing process of MSW incineration fly ash and molten slag. Procedia Environmental Sciences, 31, 351–360.

    Article  Google Scholar 

  • Makino, T., Nakamura, K., Katou, H., Ishikawa, S., Ito, M., Honma, T., et al. (2016). Simultaneous decrease of arsenic and cadmium in rice (Oryza sativa L.) plants cultivated under submerged field conditions by the application of iron-bearing materials. Soil Science and Plant Nutrition, 62(4), 340–348.

    Article  CAS  Google Scholar 

  • Maleki, H. (2016). Recent advances in aerogels for environmental remediation applications: A review. Chemical Engineering Journal, 300, 98–118.

    Article  CAS  Google Scholar 

  • Masud, M. M., Jiu-Yu, L. I., & Ren-Kou, X. U. (2014). Use of alkaline slag and crop residue biochars to promote base saturation and reduce acidity of an acidic Ultisol. Pedosphere, 24(6), 791–798.

    Article  Google Scholar 

  • Matsumoto, S., Kasuga, J., Taiki, N., Makino, T., & Arao, T. (2015). Inhibition of arsenic accumulation in Japanese rice by the application of iron and silicate materials. Catena, 135, 328–335.

    Article  CAS  Google Scholar 

  • McBain, J. W. (1909). The mechanism of the adsorption “sorption” of hydrogen by carbon. Philosophical Magazine, 18, 916–935.

    Google Scholar 

  • Mehmood, S., Ahmed, W., Rizwan, M., Imtiaz, M., Elnahal, A. S. M. A., Ditta, A., et al. (2021). Comparative efficacy of raw and HNO3-modified biochar derived from rice straw on vanadium transformation and its uptake by rice (Oryza sativa L.): Insights from photosynthesis, antioxidative response, and gene-expression profile. Environmental Pollution, 289, 117916.

    Article  CAS  Google Scholar 

  • Mehmood, S., Imtiaz, M., Bashir, S., Rizwan, M., Irshad, S., Yuvaraja, G., et al. (2019). Leaching behavior of Pb and cd and transformation of their speciation in co-contaminated soil receiving different Passivators. Environmental Engineering Science, 36(6), 749–759.

    Article  CAS  Google Scholar 

  • Mehmood, S., Rizwan, M., Bashir, S., Ditta, A., Aziz, O., Yong, L. Z., Dai, Z., Akmal, M., Ahmed, W., Adeel, M., & Imtiaz, M. (2018). Comparative effects of biochar, slag, and ferrous–Mn ore on Lead and cadmium immobilization in soil. Bulletin of Environmental Contamination and Toxicology, 100(2), 286–292.

    Article  CAS  Google Scholar 

  • Mehmood, S., Saeed, D. A., Rizwan, M., Khan, M. N., Aziz, O., Bashir, S., et al. (2018). Impact of different amendments on biochemical responses of sesame (Sesamum indicum L.) plants grown in lead-cadmium contaminated soil. Plant Physiology and Biochemistry, 132, 345–355.

    Article  CAS  Google Scholar 

  • Mehmood, S., Wang, X., Ahmed, W., Imtiaz, M., Ditta, A., Rizwan, M., et al. (2021). Removal mechanisms of slag against potentially toxic elements in soil and plants for sustainable agriculture development: A critical review. Sustainability, 13(9), 5255.

    Article  CAS  Google Scholar 

  • Mi, N., Peng, Y., Qin, Z., Fan, B., Chen, Q., & Gai, J. (2022). Synergistic effects of microorganisms and passivation materials on the growth and cd uptake of coriander (Coriandrum sativum L.) in cd-contaminated soils. Rhizosphere, 24, 100604.

    Article  Google Scholar 

  • Moon, D. H., Wazne, M., Cheong, K. H., Chang, Y. Y., Baek, K., Ok, Y. S., & Park, J. H. (2015). Stabilization of as-, Pb-, and cu-contaminated soil using calcined oyster shells and steel slag. Environmental Science and Pollution Research, 22, 11162–11169.

    Article  CAS  Google Scholar 

  • Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M., & Dhankher, O. P. (2016). Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Frontiers in Plant Science, 7, 303.

    Article  Google Scholar 

  • Mu, J., Hu, Z., Xie, Z., Huang, L., & Holm, P. E. (2019). Influence of CaO-activated silicon-based slag amendment on the growth and heavy metal uptake of vetiver grass (Vetiveria zizanioides) grown in multi-metal-contaminated soils. Environmental Science and Pollution Research, 26, 32243–32254.

    Article  CAS  Google Scholar 

  • Munir, M. A. M., Liu, G., Yousaf, B., Ali, M. U., Abbas, Q., & Ullah, H. (2020). Synergistic effects of biochar and processed fly ash on bioavailability, transformation, and accumulation of heavy metals by maize (Zea mays L.) in coal-mining contaminated soil. Chemosphere, 240, 124845.

    Article  Google Scholar 

  • Murtaza, G., Ahmed, Z., Usman, M., Tariq, W., Ullah, Z., Shareef, M., et al. (2021). Biochar-induced modifications in soil properties and its impacts on crop growth and production. Journal of Plant Nutrition, 44(11), 1677–1691.

    CAS  Google Scholar 

  • Murtaza, G., Ditta, A., Ullah, N., Usman, M., & Ahmed, Z. (2021). Biochar for the Management of Nutrient Impoverished and Metal Contaminated Soils: Preparation, applications, and prospects. Journal of Soil Science and Plant Nutrition, 21, 2191–2213.

    Article  CAS  Google Scholar 

  • Naveed, M., Ditta, A., Ahmad, M., Mustafa, A., Ahmad, Z., Conde-Cid, M., et al. (2021). Processed animal manure improves morpho-physiological and biochemical characteristics of Brassica napus L. under nickel and salinity stress. Environmental Science and Pollution Research, 28, 45629–45645.

    Article  CAS  Google Scholar 

  • Negim, O., Mench, M., Bes, C., Motelica-Heino, M., Amin, F., Huneau, F., & Le Coustumer, P. (2012). In situ stabilization of trace metals in copper-contaminated soil using P-spiked Linz–Donawitz slag. Environmental Science and Pollution Research, 19(3), 847–857.

    Article  CAS  Google Scholar 

  • Nejad, Z. D., Kim, J. W., & Jung, M. C. (2017). Reclamation of arsenic-contaminated soils around mining sites using solidification/stabilization combined with revegetation. Geosciences Journal, 21(3), 385–396.

    Article  CAS  Google Scholar 

  • Nilforoushan, M. R., & Otroj, S. (2008). Absorption of lead ions by various types of steel slag. Iranian journal of chemistry and chemical engineering, 27, 69–75.

    CAS  Google Scholar 

  • Ning, D., Liang, Y., Liu, Z., Xiao, J., & Duan, A. (2016). Impacts of steel-slag-based silicate fertilizer on soil acidity and silicon availability and metals-immobilization in a paddy soil. PLoS One, 11(12), e0168163.

    Article  Google Scholar 

  • Ning, D., Liang, Y., Song, A., Duan, A., & Liu, Z. (2016). In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer. Environmental Science and Pollution Research, 23(23), 23638–23647.

    Article  CAS  Google Scholar 

  • Piatak, N. M., Parsons, M. B., & Seal, R. R., II. (2015). Characteristics and environmental aspects of slag: A review. Applied Geochemistry, 57, 236–266.

    Article  CAS  Google Scholar 

  • Puga, A. P., Abreu, C., Melo, L. C. A., & Beesley, L. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management, 159, 86–93.

    Article  CAS  Google Scholar 

  • Qian, K., Kumar, A., Zhang, H., Bellmer, D., & Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055–1064.

    Article  CAS  Google Scholar 

  • Qu, J., Wei, S., Liu, Y., Zhang, X., Jiang, Z., Tao, Y., et al. (2022). Effective lead passivation in soil by bone char/CMC-stabilized FeS composite loading with phosphate-solubilizing bacteria. Journal of Hazardous Materials, 423, 127043.

    Article  CAS  Google Scholar 

  • Rađenović, A., Malina, J., & Sofilić, T. (2013). Characterization of ladle furnace slag from carbon steel production as a potential adsorbent. Advances in Materials Science and Engineering, 2013, 1–6.

    Article  Google Scholar 

  • Rahman, S., Xuebin, Q., Riaz, L., Yasin, G., Noor Shah, A., Shahzad, U., et al. (2021). The interactive effect of pH variation and cadmium stress on wheat (Triticum aestivum L.) growth, physiological and biochemical parameters. PLoS One, 16(7), e0253798.

    Article  Google Scholar 

  • Rizwan, M. S., Imtiaz, M., Zhu, J., Yousaf, B., Hussain, M., Ali, L., et al. (2021). Immobilization of Pb and cu by organic and inorganic amendments in contaminated soil. Geoderma, 385, 114803.

    Article  CAS  Google Scholar 

  • Sabir, A., Naveed, M., Bashir, M. A., Hussain, A., Mustafa, A., Zahir, Z. A., et al. (2020). Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. Journal of Environmental Management, 265, 110522.

    Article  CAS  Google Scholar 

  • Samara, E., Matsi, T., & Balidakis, A. (2017). Soil application of sewage sludge stabilized with steelmaking slag and its effect on soil properties and wheat growth. Waste Management, 68, 378–387.

    Article  CAS  Google Scholar 

  • Sarfraz, R., Hussain, A., Sabir, A., Fekih, I. B., Ditta, A., & Xing, S. (2019). Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration—A review. Environmental Monitoring and Assessment, 191(4), 1–13.

    Article  Google Scholar 

  • Song, Q., Guo, M. Z., Wang, L., & Ling, T. C. (2021). Use of steel slag as sustainable construction materials: A review of accelerated carbonation treatment. Resources, Conservation and Recycling, 173, 105740.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (2004). Sorption - Metals. Encyclopedia of Soils in the Environment, 532–537.

  • Sun, S. N., Wei, C., Zhu, Z. Z., Hou, Y. L., Venkatraman, S. S., & Xu, Z. C. (2014). Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chinese Physics B, 23(3), 037503.

    Article  CAS  Google Scholar 

  • Tan, X. F., Liu, Y. G., Gu, Y. L., Xu, Y., Zeng, G. M., Hu, X. J., et al. (2016). Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresource Technology, 212, 318–333.

    Article  CAS  Google Scholar 

  • Tangviroon, P., Endo, Y., Fujinaka, R., Kobayashi, M., Igarashi, T., & Yamamoto, T. (2020). Change in arsenic leaching from silty soil by adding slag cement. Water, Air, and Soil Pollution, 231, 259.

    Article  CAS  Google Scholar 

  • Thind, S., Hussain, I., Rasheed, R., Ashraf, M. A., Perveen, A., Ditta, A., et al. (2021). Alleviation of cadmium stress by silicon nanoparticles during different phenological stages of Ujala wheat variety. Arabian Journal of Geosciences, 14(11), 1–15.

    Article  Google Scholar 

  • Ullah, I., Ditta, A., Imtiaz, M., Mehmood, S., Rizwan, M., Rizwan, M. S., et al. (2020). Assessment of health and ecological risks of heavy metal contamination: A case study of agricultural soils in Thall, Dir-Kohistan. Environmental Monitoring and Assessment, 192(12), 1–19.

    Article  Google Scholar 

  • Ullah, N., Ditta, A., Khalid, A., Mehmood, S., Rizwan, M. S., Ashraf, M., et al. (2020). Integrated effect of algal biochar and plant growth promoting rhizobacteria on physiology and growth of maize under deficit irrigations. Journal of Soil Science and Plant Nutrition, 20(2), 346–356.

    Article  Google Scholar 

  • Ullah, N., Ditta, A., Imtiaz, M., Li, X., Jan, A. U., Mehmood, S., Rizwan, M. S., & Rizwan, M. (2021). Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review. Journal of Agronomy and Crop Science, 207(5), 783–802.

    Article  CAS  Google Scholar 

  • Wang, M., Zhu, Y., Cheng, L., Andserson, B., Zhao, X., Wang, D., & Ding, A. (2018). Review on utilization of biochar for metal-contaminated soil and sediment remediation. Journal of Environmental Sciences, 63, 156–173.

    Article  CAS  Google Scholar 

  • Wang, Y. M., Liu, Q., Li, M., Yuan, X. Y., Uchimiya, M., Wang, S. W., et al. (2021). Rhizospheric pore-water content predicts the biochar-attenuated accumulation, translocation, and toxicity of cadmium to lettuce. Ecotoxicology and Environmental Safety, 208, 111675.

    Article  CAS  Google Scholar 

  • Wei, L., Huang, Y., Huang, L., Huang, Q., Li, Y., Li, X., et al. (2021). Combined biochar and soda residues increase maize yields and decrease grain cd/Pb in a highly cd/Pb-polluted acid Udults soil. Agriculture, Ecosystems & Environment, 306, 107198.

    Article  CAS  Google Scholar 

  • Xiang, Y., Xiang, Y., & Gao, X. (2023). Humic acid coupled with coal gasification slag for enhancing the remediation of cd-contaminated soil under alternated light/dark cycle. Environmental Science and Pollution Research, 30, 1276–1287.

    Article  CAS  Google Scholar 

  • Yang, T., Zhang, Z., Zhang, F., Gao, Y., & Wu, Q. (2020). Chloride and heavy metal binding capacities of hydrotalcite-like phases formed in greener one-part sodium carbonate-activated slag cements. Journal of Cleaner Production, 253, 120047.

    Article  CAS  Google Scholar 

  • Yao, P., Zhou, H., Li, X., Wei, L., Wang, J., Zhang, S., & Ye, X. (2021). Effect of biochar on the accumulation and distribution of cadmium in tobacco (Yunyan 87) at different developmental stages. Ecotoxicology and Environmental Safety, 207, 111295.

    Article  CAS  Google Scholar 

  • Yousaf, B., Liu, G., Wang, R., Abbas, Q., Imtiaz, M., & Liu, R. (2017). Investigating the biochar effects on C-mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13C) approach. GCB Bioenergy, 9(6), 1085–1099.

    Article  CAS  Google Scholar 

  • Zhang, S., Gu, W., Geng, Z., Bai, J., Dong, B., Zhao, J., et al. (2023). Immobilization of heavy metals in biochar by co-pyrolysis of sludge and CaSiO3. Journal of Environmental Management, 326, 116635.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Luo, W. (2014). Adsorptive removal of heavy metal from acidic wastewater with biochar produced from anaerobically digested residues: Kinetics and surface complexation modeling. BioResources, 9(2), 2484–2499.

    Article  Google Scholar 

  • Zhang, Y., Tan, X., Duan, G., Cui, J., Ren, M., Cao, J., Xu, C., Yang, W., & Lin, A. (2022). Magnesium slag for remediation of cadmium- and arsenic-contaminated paddy soil: A field study. Soil Use and Management, 38, 1470–1480.

    Article  Google Scholar 

  • Zhao, W., Cui, Y., Sun, X., Wang, H., & Teng, X. (2021). Corn Stover biochar increased edible safety of spinach by reducing the migration of mercury from soil to spinach. Science of the Total Environment, 758, 143883.

    Article  CAS  Google Scholar 

  • Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., & Zhao, D. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100, 245–266.

    Article  CAS  Google Scholar 

  • Zhou, Y. F., & Haynes, R. J. (2011). A comparison of inorganic solid wastes as adsorbents of heavy metal cations in aqueous solution and their capacity for desorption and regeneration. Water, Air, & Soil Pollution, 218(1), 457–470.

    Article  CAS  Google Scholar 

  • Zhu, D., Miao, S., Xue, B., Jiang, Y., & Wei, C. (2019). Effect of coal gasification fine slag on the physicochemical properties of soil. Water, Air, & Soil Pollution, 230(7), 1–11.

    Article  Google Scholar 

  • Zhuo, L., Li, H., Cheng, F., Shi, Y., Zhang, Q., & Shi, W. (2012). Co-remediation of cadmium-polluted soil using stainless steel slag and ammonium humate. Environmental Science and Pollution Research, 19, 2842–2848.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (NSFC-31860728) and Qatar Petroleum (QUEX-CAS-QP-RD-18/19).

Funding

This research work has been financially supported by the National Natural Science Foundation of China (NSFC-31860728) and Qatar Petroleum (QUEX-CAS-QP-RD-18/19).

Author information

Authors and Affiliations

Authors

Contributions

Sajid Mehmood and Waqas Ahmed came up with the first draft of the article. Muhammad Imtiaz, Juha M. Alatalo, and Mohsin Mahmood prepared tables and figures. Naseer Ullah, Wei-dong Li, Rana Muhammad Ammar Asghar, and Allah Ditta critically reviewed and commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei-dong Li or Allah Ditta.

Ethics declarations

Conflict of interest

There is no conflict of interest between the authors and their research.

Ethics approval

There is no relevance to this. It should be noted that neither human nor animal research is involved in this manuscript.

Consent to participate

This manuscript was drafted by all of the authors and all of them consented to participate in its development.

Consent to publish

The authors have all given their consent for this manuscript to be published.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, S., Ahmed, W., Alatalo, J.M. et al. A systematic review on the bioremediation of metal contaminated soils using biochar and slag: current status and future outlook. Environ Monit Assess 195, 961 (2023). https://doi.org/10.1007/s10661-023-11561-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11561-7

Keywords

Navigation