Abstract
There is heightening concern regarding heavy metals environmental pollution requiring renewed global attention because of their bioaccumulation and toxicity at varying levels. The concern is most important in the highly migratory Eidolon helvum (E. helvum) that is very common and traverses wide geographical areas within the sub-Saharan Africa. The present study aimed to evaluate levels of cadmium (Cd), lead (Pb), and zinc (Zn) bioaccumulation in 24 E. helvum of both sexes from Nigeria to assess their indirect health risks to the human consumers of the bats in addition to their direct bioaccumulation and toxic damages in the bats themselves based on standard procedures. Lead, Zn, and Cd bioaccumulation concentrations were 2.83 ± 0.35, 0.42 ± 0.03, and 0.05 ± 0.01 mg/kg, respectively, with significant (p < 0.05) Pb bioaccumulation compared to either Cd or Zn in the affected bats. However, only Pb (markedly) and Cd (marginally) bioaccumulated above small mammals’ critical threshold levels as there are no existing established threshold levels for bats. Sex played no major role in their bioaccumulation levels. The bioaccumulation levels posed no life-long non-carcinogenic nor carcinogenic risks to the human consumers of the bats at detected concentrations. The observed lungs, liver, and kidney histopathological changes suggested the possible direct effects of the metals in the bats. Nevertheless, other anthropogenic factors might be responsible as no significant (p > 0.05) correlation existed between cellular changes and the bioaccumulation levels. The presence of the heavy metals and their bioaccumulations above critical threshold levels suggested some levels of environmental contamination and pollution, which might have direct and indirect health implications to the bats and their human consumers.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Data will be available upon reasonable request.
References
Abalaka, S. E. (2015). Heavy metals bioaccumulation and histopathological changes in Auchenoglanis occidentalis fish from Tiga dam, Nigeria. Journal of Environmental Health Science and Engineering, 13, 67. https://doi.org/10.1186/s40201-015-0222-y
Abalaka, S. E., Enem, S. I., Idoko, I. S., Sani, N. A., Tenuche, O. Z., Ejeh, S. A., & Sambo, W. K. (2020). Heavy metals bioaccumulation and health risks with associated histopathological changes in Clarias gariepinus from the Kado fish market, Abuja, Nigeria. Journal of health and pollution, 10(26), 200602. https://doi.org/10.5696/2156-9614-10.26.200602
Abedi-Lartey, M. (2016). Quantifying the ecological impact of the straw-coloured fruit bat (Eidolon helvum) in West Africa. Doctor of Natural Sciences Dissertation. Universität Konstanz, Baden-Württemberg, Germany.
Ahmed, M. K., Parvin, E., Islam, M. M., Akter, M. S., Khan, S., & Al-Mamun, M. H. (2014). Lead- and cadmium-induced histopathological changes in gill, kidney and liver tissue of freshwater climbing Perch Anabas testudineus (Bloch, 1792). Chemistry and Ecology, 30(6), 532–540. https://doi.org/10.1080/02757540.2014.889123
Ahmed, A., Sultana, S., Habib, A., Ullah, H., Musa, N., Hossain, M. B., Rahman, M. M., & Sarker, M. (2019). Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PloS one, 14(10), e0219336. https://doi.org/10.1371/journal.pone.0219336
Ali, H., Khan, E., & Ilahi, I. (2019a). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, Vol. 2019a, Article ID 6730305, 14 pages. https://doi.org/10.1155/2019/6730305
Ali, M. M., Ali, M. L., Proshad, R., Islam, S., Rahman, Z., Tusher, T. R., Kormoker, T., & Abdullah Al, M. (2019b). Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuli River, Bangladesh. Human and Ecological Risk Assessment: An International Journal, 26(10), 2646–2662. https://doi.org/10.1080/10807039.2019.1676635
Akwa, V. L., Binbol, N. L., Samaila, K. I., & Marcus, N. D. (2007) Geographical perspective on Nasarawa State. Pub. Onavi, Keffi.
Atuman, Y. J., Ogunkoya, A. B., Adawa, D. A. Y., Nok, A. J., & Biallah, M. B. (2014). Dog ecology, dog bites and rabies vaccination rates in Bauchi State, Nigeria. International Journal of Veterinary Science and Medicine, 2(1), 41–45. https://doi.org/10.1016/j.ijvsm.2014.04.001
Australian Bureau of Statistics. (2022). Statistical language - Correlation and causation. Retrieve October 12, 2022, from https://www.abs.gov.au/websitedbs/D3310114.nsf/home/statistical+language+-+correlation+and+causation
Bancroft, J. D., & Cook, H. C. (1994). Manual of histological techniques and their diagnostic application. Churchill Livingstone.
Bassey, F. I., Oguntunde, F. C., Iwegbue, C. M., Osabor, V. N., & Edem, C. A. (2014). Effects of processing on the proximate and metal contents in three fish species from Nigerian coastal waters. Food Science & Nutrition, 2(3), 272–281. https://doi.org/10.1002/fsn3.102
Bat, L., Ahmed, Q., Öztekin, A., & Arici, E. (2020). A review on heavy metal levels in sea cucumbers. International journal of environment and geoinformatics 7, 252–264. https://doi.org/10.30897/ijegeo.734402
Bayat, S., Geiser, F., Kristiansen, P., & Wilson, S. C. (2014). Organic contaminants in bats: Trends and new issues. Environment International, 63, 40–52. https://doi.org/10.1016/j.envint.2013.10.009
Botella, P., & Esteban, J. G. (1995). Histopathology of the stomach lesion caused by Physaloptera brevivaginata (Nematoda: Physalopteridae) in bats in Spain. Folia Parasitologica, 42(2), 143–148.
Bravo, Y., Quiroz, Y., Ferrebuz, A., Vaziri, N. D., & Rodríguez-Iturbe, B. (2007). Mycophenolate mofetil administration reduces renal inflammation, oxidative stress, and arterial pressure in rats with lead-induced hypertension. American Journal of Physiology - Renal Physiology, 293(2), F616–F623. https://doi.org/10.1152/ajprenal.00507.2006
Broderick, J. B. (2001). Coenzymes and cofactors. eLS; American Cancer Society. Atlanta, GA, USA.
Burns, D. T., Danzer, K., & Townshend, A. (2002). Use of the term “recovery” and “apparent recovery” in analytical procedures (IUPAC recommendations 2002). Pure and Applied Chemistry, 74(11), 2201–2205. https://doi.org/10.1351/pac200274112201
Calao-Ramos, C., Gaviria-Angulo, D., Marrugo-Negrete, J., Calderón-Rangel, A., Guzmán-Terán, C., Martínez-Bravo, C., & Mattar, S. (2021). Bats are an excellent sentinel model for the detection of genotoxic agents. Study in a Colombian Caribbean region. Acta tropica, 224, 106141. https://doi.org/10.1016/j.actatropica.2021.106141
Chronopoulos, J., Haidouti, C., Chronopoulou, A., & Massas, I. (1997). Variations in plant and soil lead and cadmium content in urban parks in Athens, Greece. Science of the Total Environment, 196(1), 91–98. https://doi.org/10.1016/S0048-9697(96)05415-0
Dallinger, R. (1994). Invertebrate organisms as biological indicators of heavy metal pollution. Applied Biochemistry and Biotechnology, 48, 27–31. https://doi.org/10.1007/BF02825356
Divers, S. J., & Cooper, J. E. (2000). Reptile hepatic lipidosis. Seminars in Avian and Exotic Pet Medicine, 9(3), 153–164. https://doi.org/10.1053/ax.2000.7136
Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112–118.
Egwumah, F. A., Egwumah, P. O., & Edet, D. I. (2017). Paramount roles of wild birds as bioindicators of contamination. International journal of avian & wildlife biology, 6, 00041. https://doi.org/10.15406/ijawb.2017.02.00041
Epstein, J. H., Olival, K. J., Pulliam, J. R. C., Smith, C., Westrum, J., Hughes, T., Dobson, A. P., Sohayati, A. Z., Misliah, A. R., Basir, M. M., Field, H. E., & Daszak, P. (2009). Pteropus vampyrus, a hunted migratory species with a multinational home-range and a need for regional management. Journal of Applied Ecology, 46(5), 991–1002. https://doi.org/10.1111/j.1365-2664.2009.01699.x
FAO/WHO. (1982). Evaluation of certain food additives and contaminants. Twenty-sixth report of the joint FAO/WHO expert committee on food additives; World Health Organization: Geneva, Switzerland.
Farina, L. L., Heard, D. J., LeBlanc, D. M., Hall, J. O., Stevens, G., Wellehan, J. F. X., & Detrisac, C. J. (2005). Iron storage disease in captive Egyptian fruit bats (Rousettus aegyptiacus): Relationship of blood iron parameters to hepatic iron concentrations and hepatic histopathology. Journal of Zoo and Wildlife Medicine, 36(2), 212–221. https://doi.org/10.1638/03-115.1
Hariono, B., Ng, J., & Sutton, R. H. (1993). Lead concentrations in tissues of fruit bats (Pteropus sp.) in urban and non-urban locations. Wildlife Research, 20, 315–319. https://doi.org/10.1071/WR9930315
Hernout, B. V., Arnold, K. E., McClean, C. J., Walls, M., Baxter, M., & Boxall, A. (2016). A national level assessment of metal contamination in bats. Environmental pollution (Barking, Essex: 1987), 214, 847–858. https://doi.org/10.1016/j.envpol.2016.04.079
Hoenerhoff, M., & Williams, K. (2004). Copper-associated hepatopathy in a Mexican fruit bat (Artibeus jamaicensis) and establishment of a reference range for hepatic copper in bats. Journal of Veterinary Diagnosis and Investigations, 16(6), 590–593. https://doi.org/10.1177/104063870401600619
Hoffman, L. C., & Cawthorn, D. M. (2012). What is the role and contribution of meat from wildlife in providing high quality protein for consumption? Animal Frontiers, 2(4), 40–53. https://doi.org/10.2527/af.2012-0061
Khalef, R. N., Hassan, A. I., & Saleh, H. M. (2022). Heavy metal’s environmental impact. In H. M. Saleh, & A. I. Hassan (Eds.), Environmental Impact and Remediation of Heavy Metals. IntechOpen. https://doi.org/10.5772/intechopen.103907
Kunz, T., & Parsons, S. S. (2009). Ecological and behavioral methods for the study of bats (2nd ed.). John Hopkins University Press.
Ma, W. C., Talmage, S. (2001). Insectivora. In: R. F. Shore, B. A., Rattner (Eds.), Ecotoxicology of wild mammals. (159–215). John Wiley & Sons, New York, NY.
Maina, J. N. (2002). Some recent advances on the study and understanding of the functional design of the avian lung: Morphological and morphometric perspectives. Biological Reviews of the Cambridge Philosophical Society, 77(1), 97–152. https://doi.org/10.1017/s1464793101005838
Mansour, S. A., Soliman, S. S., & Soliman, K. M. (2016). Monitoring of heavy metals in the environment using bats as bioindicators: First study in Egypt. Vespertilio, 18, 61–78.
Mickleburgh, S., Waylen, K., & Racey, P. (2009). Bats as bushmeat: A global review. Oryx, 43(2), 217–234. https://doi.org/10.1017/S0030605308000938
Mina, R. M. R. (2017). Bioaccumulation of metals in bats: Is there a potential risk? Master's Thesis in Ecology. Department of Life Sciences, Coimbra University, Portugal.
Munster, V. J., Adney, D. R., van Doremalen, N., Brown, V. R., Miazgowicz, K. L., Milne-Price, S., Bushmaker, T., Rosenke, R., Scott, D., Hawkinson, A., de Wit, E., Schountz, T., & Bowen, R. (2016). Replication and shedding of MERSCoV in Jamaican fruit bats (Artibeus jamaicensis). Scientific Reports, 6, 21878. https://doi.org/10.1038/srep21878
Mustafa, S. A. (2020). Histopathology and heavy metal bioaccumulation in some tissues of Luciobarbus xanthopterus collected from Tigris River of Baghdad, Iraq. The Egyptian Journal of Aquatic Research, 46(2), 123–129. https://doi.org/10.1016/j.ejar.2020.01.004
Nakhleh, R. E. (2017). Pathology and differential diagnosis of hepatic venous outflow impairment. Clinical Liver Disease, 10(2), 49–52.
Neila, C., Hernández-Moreno, D., Fidalgo, L. E., López-Beceiro, A., Soler, F., & Pérez-López, M. (2017). Does gender influence the levels of heavy metals in liver of wild boar? Ecotoxicology and Environmental Safety, 140, 24–29. https://doi.org/10.1016/j.ecoenv.2017.02.025
Nkpaa, K. W., Patrick-Iwuanyawu, K. C., Wegwu, M. O., & Essien, E. B. (2016). Health risk assessment of hazardous metals for population via consumption of seafood from Ogoniland, Rivers State, Nigeria: A case study of Kaa, B-Dere and Bodo City. Environmental Monitoring and Assessment, 188, 1–10. https://doi.org/10.1007/s10661-015-5006-4
Onita (Mladin), B., Albu, P., Herman, H., Balta, C., Lazar, V., Fulop, A., Baranyai, E., Harangi, S., Keki, S., Nagy, L., Nagy, T., Józsa, V., Gál, D., Györe, K., Stan, M., Hermenean, A., & Dinischiotu, A. (2021). Correlation between heavy metal-induced histopathological changes and trophic interactions between different fish species. Applied Sciences, 11, 3760. https://doi.org/10.3390/app11093760
Oliveira, J. M., Brinati, A., Miranda, L. D. L., Morais, G. B., Zanuncio, J. C., Gonçalves, R. V., Peluzio, M. D. G., & Freitas, M. B. (2017). Exposure to the insecticide endosulfan induces liver morphology alterations and oxidative stress in fruit-eating bats (Artibeus lituratus). International Journal of Experimental Pathology, 98(1), 17–25. https://doi.org/10.1111/iep.12223
Osman, A. G. M., Abd El Reheem, A. -B. M., AbuelFadl, K. Y., & GadEl-Rab, A. G. (2010). Enzymatic and histopathologic biomarkers as indicators of aquatic pollution in fishes. Natural Science, 2(11), 1302–1311. https://doi.org/10.4236/ns.2010.211158
Peel, A. J., Wood, J. L. N., Baker, K. S., Breed, A. C., De Carvalho, A., Fernández-Loras, A., Gabrieli, H. S., Gembu, G., Kakengi, V. A., Kaliba, P. M., Kityo, R. M., Lembo, T., Mba, F. E., Ramos, D., Rodriguez-Prieto, I., Suu-Ire, R., Cunningham, A. A., & Hayman, D. T. S. (2017). How does Africa’s most hunted bat vary across the continent? Population traits of the straw-coloured fruit bat (Eidolon helvum) and its interactions with humans. Acta Chiropterologica, 19(1), 77–92. https://doi.org/10.3161/150811094CC2017.19.1.006
Pedersen, S. C., Popowics, T. E., Kwiecinski, G. G., & Knudsen, D. E. B. (2012). Sublethal pathology in bats associated with stress and volcanic activity on Montserrat, West Indies. Journal of Mammalogy, 93(5), 1380–1392. https://doi.org/10.1644/12-MAMM-A-033.1
Rafique, S., Gillani, S. S., & Nazir, R. (2021). Lead and cadmium toxic effects on human health: A review. Journal of Nutrition and Food Sciences, 11(S9), 459.
Richter, H. V., & Cumming, G. S. (2006). Food availability and annual migration of the straw-colored fruit bat (Eidolon helvum). Journal of Zoology, 268, 35–44. https://doi.org/10.1111/j.1469-7998.2005.00020.x
Richter, H. V., & Cumming, G. S. (2008). First application of satellite telemetry to track African straw-coloured fruit bat migration. Journal of Zoology, 275, 172–176. https://doi.org/10.1111/j.1469-7998.2008.00425.x
Ruczyński, I., & Bartoń, K. A. (2020). Seasonal changes and the influence of tree species and ambient temperature on the fission-fusion dynamics of tree-roosting bats. Behavioral Ecology and Sociobiology, 74, 63. https://doi.org/10.1007/s00265-020-02840-1
Russo, D., Salinas-Ramos, V. B., Cistrone, L., Smeraldo, S., Bosso, L., & Ancillotto, L. (2021). Do we need to use bats as bioindicators? Biology (basel)., 10(8), 693. https://doi.org/10.3390/biology10080693
Sabath, E., & Robles-Osorio, M. L. (2012). Renal health and the environment: Heavy metal nephrotoxicity. Nefrología, 32(3), 275–418. https://doi.org/10.3265/Nefrologia.pre2012.Jan.10928
Sale, J. B. (1981). The importance and values of wild plants and animals in Africa. Part 1. International Union for Conservation of Nature and Natural Resources, Gland, Switzerland, in Association with the United Nation Environmental Programme.
Sánchez-Chardi, A., Peñarroja-Matutano, C., Oliveira Ribeiro, C. A., & Nadal, J. (2007). Bioaccumulation of metals and effects of landfill pollution in small mammals. Part 2. The wood mouse Apodemus Sylvaticus. Chemosphere, 70, 101–109. https://doi.org/10.1016/j.chemosphere.2007.01.042
Slobodian, M. R., Petahtegoose, J. D., Wallis, A. L., Levesque, D. C., & Merritt, T. J. S. (2021). The effects of essential and non-essential metal toxicity in the drosophila melanogaster insect model: A review. Toxics, 9(10), 269. https://doi.org/10.3390/toxics9100269
Sikes, R. S. (2016). The Animal Care and Use Committee of the American Society of Mammalogists, 2016 Guidelines of the American Society of Mammalogists for the Use of Wild Mammals in Research and Education. Journal of Mammalogy, 97(3), 663–688. https://doi.org/10.1093/jmammal/gyw078
Snyder, J. M., Treuting, P. M., Brabb, T., Miller, K. E., Covey, E., & Lencioni, K. L. (2015). Hepatic lipidosis in a research colony of big brown bats (Eptesicus fuscus). Comparative Medicine, 65(2), 133–139.
Storelli, M. M. (2008). Potential human health risk from metal (Hg, Cd and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: Estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chemistry and Toxicology, 46, 2782–2788. https://doi.org/10.1016/j,fct2008.05.011
Sutton, R. H., & Hariono, B. (1987). Lead poisoning in flying-foxes (Chiroptera: Pteropodidae). Australian Mammalogy, 10, 125–126. https://doi.org/10.1071/AM87026
The Commission of the European Communities. (2006). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, L 364/5–24.
Thomas, D. W. (1983a). The annual migrations of three species of West African fruit bats (Chiroptera: Pteropodidae). Canadian Journal of Zoology, 61(10), 2266–2272.
Thomas, D. W. (1991). On fruits, seeds, and bats. Bats, 9, 8–13.
Thomas, D. W. (1983b). The annual migrations of three species of West African fruit bats (Chiroptera: Pteropodidae). Canadian Journal of Zoology, 61, 2266–2272. https://doi.org/10.1139/z83-299
Thompson, M., Ellison, S. L. R., Fajgelj, A., Willetts, P., & Wood, R. (1999). Harmonised guidelines for the use of recovery information in analytical measurement (Technical report). Pure and Applied Chemistry, 71(2), 337–348. https://doi.org/10.1351/pac199971020337
UNDP. (2016). Human development report 2016: Human development for everyone. United Nations Development Programme; 2016; pp. 191–270. Retrieved June 2, 2018, from http://www.hdr.undp.org/sites/default/files/hdr2016statisticalannex.pdf
University of York. (2016). Metal exposure: Factor in bat population decline. ScienceDaily. Retrieved March 10, 2022, from https://www.sciencedaily.com/releases/2016/06/160609064340.htm
USEPA. (2004). What you need to know about mercury in fish and shellfish. EPA-823-F-04–009. United States Environmental Protection Agency, USA.
USEPA. (1989). Human Health Evaluation Manual. EPA/540/1–89/002, vol. I, Office of Emergency and Remedial Response, Washington, DC.
USEPA. (2012). EPA Region III Risk-Based Concentration (RBC) Table 2008 Region III, 1650 Arch Street (p. 19103). Pennsylvania.
Van Loon, J. C., & Lichwa, J. (1973). A study of the atomic absorption determination of some important heavy metals in fertilizers and domestic sewage plant sludges. Environmental Letters, 4(1), 1–8. https://doi.org/10.1080/00139307309435477
Wang, X., Xing, B., & Tao, S. (2005). Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Science of the Total Environment, 350(1–3), 28–37. https://doi.org/10.1016/j.scitoterny.2004.09.044
Wang, L., Wang, H., Hu, M., Cao, J., Chen, D., & Liu, Z. (2009). Oxidative stress and apoptotic changes in primary cultures of rat proximal tubular cells exposed to lead. Archives of Toxicology, 83(5), 417–427. https://doi.org/10.1007/s00204-009-0425-z
Water Resources. (2019). Metals and other trace elements. USGS: Science for a changing world. Retrieved October 6, 2022 from, https://www.usgs.gov/mission-areas/water-resources/science/metals-and-other-trace-elements
Wilcove, D. S., & Wikelski, M. (2008). Going, going, gone: Is animal migration disappearing? PLoS Biology, 6(7), e188.
WildAid. (2021). Understanding Urban Consumption of Bushmeat in Nigeria. WildAid. Retrieved March 9, 2022, from https://wildaid.org/wp-content/uploads/2021/01/Nigeria-Bushmeat-Consumption-Survey-Report.pdf
Zheljazkov, V. D., & Nielsen, N. E. (1996). Effect of heavy metals on peppermint and cornmint. Plant and Soil, 178, 59–66. https://doi.org/10.1007/BF00011163
Zukal, J., Pikula, J., & Bandouchova, H. (2015). Bats as bioindicators of heavy metal pollution: History and prospect. Mammalian Biology, 80, 220–227. https://doi.org/10.1016/j.mambio.2015.01.001
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethics approval
The University of Abuja Ethics Committee on Animal Use (UAECAU), University of Abuja, Abuja, Nigeria, approved the work with approval no: UAECAU/2021/001 and care was taken to minimize stress and the number of animals used.
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Abalaka, S.E., Idoko, I.S., Adamu, A.M. et al. Histopathological and health risk assessment of heavy metals in the straw-colored fruit bat, Eidolon helvum, in Nigeria. Environ Monit Assess 195, 411 (2023). https://doi.org/10.1007/s10661-023-10990-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-023-10990-8