Skip to main content

Advertisement

Log in

Mapping potential groundwater accumulation zones for Karachi city using GIS and AHP techniques

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Karachi is the largest industrial metropolitan of Pakistan facing an acute water shortage which is leading to an overdraft of groundwater resources in the city. Groundwater is an important freshwater resource for the city as millions of people depend for sustenance. However, over-exploitation of groundwater has led to decreased groundwater levels within the city leading to environmental issues of depleting aquifers, deteriorating groundwater quality, land subsidence, and harm to groundwater-dependent ecosystems. The objective of the study was to assess the potential groundwater accumulation zones by integrating hydrogeological aspects of the city through nine thematic layers using the Geographic Information System (GIS) based multi-criteria decision analysis (MCDA) technique. The potential groundwater accumulation map reveals that 20% of the area has a low potential, 70% has moderate potential, and around 10% of the area in the city is composed of a high potential accumulation zone. The upstream regions of the city have the highest recharge potential because of sandy soil and barren land use, which promote high infiltration rates. The urbanized downstream areas have the lowest recharge potential due to impervious fabric. The findings reveal that the MCDA technique can be used with confidence in data-scarce regions for groundwater resource assessment and management. The recharge potential map can help better manage groundwater resources in the city by helping explore groundwater extraction opportunities and could hint at areas suitable for artificial recharge wells/ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  • Abdalla, F. (2012). Mapping of groundwater prospective zones using remote sensing and GIS techniques: A case study from the Central Eastern Desert, Egypt. Journal of African Earth Sciences, 70, 8–17.

    Article  CAS  Google Scholar 

  • Agarwal, E., Agarwal, R., Garg, R. D., & Garg, P. K. (2013). Delineation of groundwater potential zone: An AHP/ANP approach. Journal of Earth System Science, 122(3), 887–898.

    Article  Google Scholar 

  • Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H. (2014). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21–36.

    Article  Google Scholar 

  • Andualem, T. G., & Demeke, G. G. (2019). Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper Blue Nile Basin, Ethiopia. Journal of Hydrology: Regional Studies, 24, 100610. https://doi.org/10.1016/j.ejrh.2019.100610

  • Arkoprovo, B., Adarsa, J., & Prakash, S. S. (2012). Delineation of groundwater potential zones using satellite remote sensing and GIS techniques: A case study from Ganjam district, Orissa, India. Research Journal of Recent Sciences, 1(9), 59–66.

    Google Scholar 

  • Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques based delineation of groundwater potential zones: A case study from southern Western Ghats, India. Scientific Reports, 9(1), 1–17.

    Article  CAS  Google Scholar 

  • Barringer, F. (2015). World’s Aquifers Losing Replenishment Race, Researchers Say. The New York Times. https://www.nytimes.com/2015/06/26/science/worlds-aquifers-losing-replenishment-race-researchers-say.html

  • Bastani, M., Kholghi, M., & Rakhshandehroo, G. R. (2010). Inverse modeling of variable-density groundwater flow in a semi-arid area in Iran using a genetic algorithm. Hydrogeology Journal, 18(5), 1191–1203.

    Article  CAS  Google Scholar 

  • Chandio, I. A., Matori, A. N. B., WanYusof, K. B., Talpur, M. A. H., Balogun, A. L., & Lawal, D. U. (2013). GIS-based analytic hierarchy process as a multicriteria decision analysis instrument: A review. Arabian Journal of Geosciences, 6(8), 3059–3066.

    Article  Google Scholar 

  • Chowdhury, A., Jha, M. K., Chowdary, V. M., & Mal, B. C. (2009). Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. International Journal of Remote Sensing, 30(1), 231–250.

    Article  Google Scholar 

  • Dadgar, M. A., Zeaieanfirouzabadi, P., Dashti, M., & Porhemmat, R. (2017). Extracting of prospective groundwater potential zones using remote sensing data, GIS, and a probabilistic approach in Bojnourd basin, NE of Iran. Arabian Journal of Geosciences, 10(5), 114.

    Article  Google Scholar 

  • Das, B., & Pal, S. C. (2020). Assessment of groundwater vulnerability to over-exploitation using MCDA, AHP, fuzzy logic and novel ensemble models: A case study of Goghat-I and II blocks of West Bengal, India. Environmental Earth Sciences, 79(5), 1–16.

    Article  Google Scholar 

  • De Reu, J., Bourgeois, J., Bats, M., Zwertvaegher, A., Gelorini, V., De Smedt, P., & Crombé, P. (2013). Application of the topographic position index to heterogeneous landscapes. Geomorphology, 186, 39–49.

    Article  Google Scholar 

  • Duan, H., Deng, Z., Deng, F., & Wang, D. (2016). Assessment of groundwater potential based on multicriteria decision making model and decision tree algorithms. Mathematical Problems in Engineering, 2016.

  • Fashae, O. A., Tijani, M. N., Talabi, A. O., & Adedeji, O. I. (2014). Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: An integrated GIS and remote sensing approach. Applied Water Science, 4(1), 19–38.

    Article  CAS  Google Scholar 

  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2, 150066. https://doi.org/10.1038/sdata.2015.66

  • Gaur, S., Chahar, B. R., & Graillot, D. (2011). Combined use of groundwater modeling and potential zone analysis for management of groundwater. International Journal of Applied Earth Observation and Geoinformation, 13(1), 127–139.

    Article  Google Scholar 

  • Ghorbani Nejad, S., Falah, F., Daneshfar, M., Haghizadeh, A., & Rahmati, O. (2017). Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models. Geocarto International, 32(2), 167–187.

    Google Scholar 

  • Gogu, R., Carabin, G., Hallet, V., Peters, V., & Dassargues, A. (2001). GIS-based hydrogeological databases and groundwater modelling. Hydrogeology Journal, 9(6), 555–569.

    Article  Google Scholar 

  • Groundwater and Global Change: Trends, Opportunities and Challenges. (2021). International ground water resource assessment centre. Retrieved 21-05-2021 from https://www.un-igrac.org/resource/groundwater-andglobal-change-trends-opportunities-and-challenges

  • Groundwater Storage and the Water Cycle. (2018). United States Geological Survey. Retrieved 21/05/2021 from https://www.usgs.gov/special-topic/waterscience-school/science/groundwater-storage-and-water-cycle?qt-science_center_objects=0#qtscience_center_objects

  • Guru, B., Seshan, K., & Bera, S. (2017). Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert, India. Journal of King Saud University - Science, 29(3), 333–347. https://doi.org/10.1016/j.jksus.2016.08.003

    Article  Google Scholar 

  • Ibrahim-Bathis, K., & Ahmed, S. A. (2016). Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. The Egyptian Journal of Remote Sensing and Space Science, 19(2), 223–234.

    Article  Google Scholar 

  • Jha, M. K., & Chowdary, V. M. (2007). Challenges of using remote sensing and GIS in developing nations. Hydrogeology Journal, 15(1), 197–200.

    Article  Google Scholar 

  • Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2010). Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18(7), 1713–1728.

    Article  Google Scholar 

  • JICA. (2013). Preparatory survey (ii) on Karachi circular railway revival project in Islamic Republic of Pakistan, Volume 2/2https://openjicareport.jica.go.jp/pdf/12088407_01.pdf

  • Jhariya, D. C., Kumar, T., Dewangan, R., Pal, D., & Dewangan, P. K. (2017). Assessment of groundwater quality index for drinking purpose in the Durg district, Chhattisgarh using Geographical Information System (GIS) and Multi-Criteria Decision Analysis (MCDA) techniques. Journal of the Geological Society of India, 89(4), 453–459.

    Article  CAS  Google Scholar 

  • Kumar, T., Gautam, A. K., & Kumar, T. (2014). Appraising the accuracy of GIS-based multi-criteria decision making technique for delineation of groundwater potential zones. Water Resources Management, 28(13), 4449–4466.

    Article  Google Scholar 

  • Le Page, M., Berjamy, B., Fakir, Y., Bourgin, F., Jarlan, L., Abourida, A., & Chehbouni, G. (2012). An integrated DSS for groundwater management based on remote sensing. The case of a semi-arid aquifer in Morocco. Water resources management, 26(11), 3209–3230.

  • Lee, S., & Lee, C. W. (2015). Application of decision-tree model to groundwater productivity-potential mapping. Sustainability, 7(10), 13416–13432.

    Article  Google Scholar 

  • Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33–41.

    Article  Google Scholar 

  • Lytton, L., Ali, A., Garthwaite, B., Punthakey, J. F., & Saeed, B. A. (2021). Groundwater in Pakistan’s Indus Basin: Present and future prospects (156021).

  • Madrucci, V., Taioli, F., & de Araújo, C. C. (2008). Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, Sao Paulo State, Brazil. Journal of Hydrology, 357(3–4), 153–173.

    Article  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing GIS and MIF Techniques. Geoscience Frontiers, 3(2), 189–196.

    Article  Google Scholar 

  • Manap, M. A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W. N. A., & Ramli, M. F. (2014). Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences, 7(2), 711–724.

    Article  Google Scholar 

  • Moghaddam, D. D., Rezaei, M., Pourghasemi, H. R., Pourtaghie, Z. S., & Pradhan, B. (2015). Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arabian Journal of Geosciences, 8(2), 913–929.

    Article  Google Scholar 

  • Mohanty, S., Jha, M. K., Raul, S. K., Panda, R. K., & Sudheer, K. P. (2015). Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites. Water Resources Management, 29(15), 5521–5532.

    Article  Google Scholar 

  • Mukherjee, P., Singh, C. K., & Mukherjee, S. (2012). Delineation of groundwater potential zones in arid region of India—A remote sensing and GIS approach. Water Resources Management, 26(9), 2643–2672.

    Article  Google Scholar 

  • Musa, K. A., Akhir, J. M., & Abdullah, I. (2000). Groundwater prediction potential zone in Langat Basin using the integration of remote sensing and GIS. Retrieved July 24, 2008, from http://www.gisdevelopment.net

  • Nag, S. K., & Kundu, A. (2016). Delineation of groundwater potential zones in hard rock terrain in Kashipur block, Purulia district, West Bengal, using geospatial techniques. International Journal of Waste Resources, 6(1), 1000201.

    Article  Google Scholar 

  • Nair, H. C., Padmalal, D., Joseph, A., & Vinod, P. G. (2017). Delineation of groundwater potential zones in river basins using geospatial tools—an example from Southern Western Ghats, Kerala, India. Journal of Geovisualization and Spatial Analysis, 1, 5.

    Article  Google Scholar 

  • Nampak, H., Pradhan, B., & Abd Manap, M. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283–300.

    Article  Google Scholar 

  • Nguyen, P. T., Ha, D. H., Avand, M., Jaafari, A., Nguyen, H. D., Al-Ansari, N., & Pham, B. T. (2020a). Soft computing ensemble models based on logistic regression for groundwater potential mapping. Applied Sciences, 10(7), 2469.

  • Nguyen, P. T., Ha, D. H., Jaafari, A., Nguyen, H. D., Van Phong, T., Al-Ansari, N., & Pham, B. T. (2020b). Groundwater potential mapping combining artificial neural network and real AdaBoost ensemble technique: The DakNong province case-study, Vietnam. International journal of environmental research and public health, 17(7), 2473.

  • Normal Rainfal Annual. (2019). Pakistan Metrological Department (PMD). Retrived 21/05/2021 from http://www.pmd.gov.pk/cdpc/home.htm

  • Ozdemir, A. (2011). Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). Journal of Hydrology, 405(1–2), 123–136.

    Article  Google Scholar 

  • Panahi, M. R., Mousavi, S. M., & Rahimzadegan, M. (2017). Delineation of groundwater potential zones using remote sensing, GIS, and AHP technique in Tehran-Karaj plain, Iran. Environmental Earth Sciences, 76, 1–15. Article 792.

    Article  Google Scholar 

  • Pietersen, K. (2006). Multiple criteria decision analysis (MCDA): A tool to support sustainable management of groundwater resources in South Africa. Water SA, 32(2), 119–128.

    Google Scholar 

  • Population Census. (2017). Pakistan Bureau of Statistics. Retrieved 21/05/2021 from https://www.pbs.gov.pk/sites/default/files/population/census_reports/pcr_sindh.pdf

  • Pothiraj, P., & Rajagopalan, B. (2013). A GIS and remote sensing based evaluation of groundwater potential zones in a hard rock terrain of Vaigai sub-basin, India. Arabian Journal of Geosciences, 6(7), 2391–2407.

    Article  Google Scholar 

  • Pourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards, 63(2), 965–996.

    Article  Google Scholar 

  • Pradhan, B. (2009). Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques. Central European Journal of Geosciences, 1(1), 120–129.

    Google Scholar 

  • Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55(3), 467–475.

    Article  Google Scholar 

  • Rahmat, Z. G., Niri, M. V., Alavi, N., Goudarzi, G., Babaei, A. A., Baboli, Z., & Hosseinzadeh, M. (2017). Landfill site selection using GIS and AHP: A case study: Behbahan, Iran. KSCE Journal of Civil Engineering, 21(1), 111–118.

    Article  Google Scholar 

  • Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8(9), 7059–7071.

    Article  Google Scholar 

  • Rajasekhar, M., Sudarsana Raju, G., Bramaiah, C., Deepthi, P., Amaravathi, Y., & Siddi Raju, R. (2018). Delineation of groundwater potential zones of semi-arid region of YSR Kadapa District, Andhra Pradesh, India using RS, GIS and analytic hierarchy process. Remote Sensing of Land, 2(2), 76–86.

    Google Scholar 

  • Rajaveni, S. P., Brindha, K., & Elango, L. (2017). Geological and geomorphological controls on groundwater occurrence in a hard rock region. Applied Water Science, 7, 1377–1389.

    Article  Google Scholar 

  • Rather, A. F., Ahmed, R., Wani, G. F., et al. (2022). Mapping of groundwater potential zones in Pohru Watershed of Jhelum Basin-Western Himalaya, India using integrated approach of remote sensing GIS and AHP. Earth Science Informatics, 15, 2091–2107. https://doi.org/10.1007/s12145-022-00824-5

    Article  Google Scholar 

  • Rizeei, H. M., Pradhan, B., Saharkhiz, M. A., & Lee, S. (2019). Groundwater aquifer potential modeling using an ensemble multi-adoptive boosting logistic regression technique. Journal of Hydrology, 579, 124172.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. McGraw Hill.

    Google Scholar 

  • Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process (Vol. 4922, No. 2). Pittsburgh: RWS publications.

  • Saaty, T. L. (2019). The brain: Unraveling the mystery of how it works: The Neural Network Process. Rws Publications.

  • Sahoo, S., & Jha, M. K. (2013). Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment. Hydrogeology Journal, 21(8), 1865–1887.

    Article  Google Scholar 

  • Singh, P., Thakur, J. K., & Kumar, S. (2013). Delineating groundwater potential zones in a hard-rock terrain using geospatial tool. Hydrological Sciences Journal, 58(1), 213–223.

    Article  Google Scholar 

  • Situational Analysis of the Water Resources of Karachi. (2019). W. W. F. f. Nature. https://wwfasia.awsassets.panda.org/downloads/report___situational_analysis_of_water_resources_of_karachi.pdf

  • Stumpp, C., Żurek, A. J., Wachniew, P., Gargini, A., Gemitzi, A., Filippini, M., & Witczak, S. (2016). A decision tree tool supporting the assessment of groundwater vulnerability. Environmental Earth Sciences, 75(13), 1–7.

    Article  Google Scholar 

  • Todd, D. K., & Mays, L. W. (1980). Groundwater hydrology (p. 535). John Willey & Sons. Inc.

    Google Scholar 

  • Wandrey, C. J., & Law, B. E. (1998). Maps showing geology, oil and gas fields and geologic provinces of South Asia: U.S. Geological Survey, 10. https://doi.org/10.3133/ofr97470C. Open-File Report 97–470-C.

  • World Bank. (2018). Transforming Karachi into a livable and competitive megacity: A city diagnostic and transformation strategy. The World Bank.

  • World City Populations. (2022). Retrieved February 21, 2022, from https://worldpopulationreview.com/world-cities

  • Yeh, H. F., Cheng, Y. S., Lin, H. I., & Lee, C. H. (2016). Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustainable Environment Research, 26(1), 33–43.

    Article  CAS  Google Scholar 

  • Young, W. J., Anwar, A., Bhatti, T., Borgomeo, E., Davies, S., Garthwaite III, W. R., Gilmont, E., Michael, L., Christina L., Lucy, M. I., & Saeed, B. (2019). Pakistan: Getting more from water (133964). World Bank.

  • Zangiski, F., Miquelluti, D. J., Bertol, I., & Ramos, J. C. (2018). Soil roughness indexes and their relationship with water erosion. Pesquisa Agropecuária Brasileira, 53, 756–764.

    Article  Google Scholar 

  • Zektser, S., Loáiciga, H. A., & Wolf, J. T. (2005). Environmental impacts of groundwater overdraft: Selected case studies in the southwestern United States. Environmental Geology, 47, 396–404. https://doi.org/10.1007/s00254-004-1164-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ibtihaj Ahmad performed conceptualization of study and designed the methodology, collected spatial dataset and/or digitization of dataset for GIS analysis, performed GIS analysis, preparation of draft and final manuscript. Hamna Hasan performed conceptualization of study and designed the methodology, collected spatial dataset for GIS analysis, interpretation of results, preparation of draft and final manuscript. Moeid Mujeeb Jillani collected spatial dataset and/or digitization of dataset for GIS analysis, performed GIS analysis, preparation of GIS maps for the study. Dr. Syed Imran Ahmed supervised the study, and review the study design, results interpretation, draft and final manuscript.

Corresponding author

Correspondence to Ibtihaj Ahmad.

Ethics declarations

Ethical responsibilities of authors

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Hasan, H., Jilani, M.M. et al. Mapping potential groundwater accumulation zones for Karachi city using GIS and AHP techniques. Environ Monit Assess 195, 381 (2023). https://doi.org/10.1007/s10661-023-10971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10971-x

Keywords

Navigation