Skip to main content

Advertisement

Log in

Conceptual model of a semi-arid coastal aquifer using hydrogeochemical seasonal variation and isotopic fingerprints in Tamoios, Rio de Janeiro, Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study focuses on the Tamoios aquifer (Rio de Janeiro State, Brazil), which is under pressure due to receiving a significant volume of urban runoff and sewage. The objective was based on a number of hydrogeochemical and isotope data to assess the aquifer functioning and establishing a conceptual model to evaluate the hydrogeochemical processes. The database consisted of groundwater samples (n = 20) and surface water samples (fluvial, lagoon, and seawater) (n = 4), analyzed for major and trace constituents plus 18O and 2H isotopes. Results demonstrate that most of the groundwater samples were classified as sodium-chloride type in the rainy season and magnesium-chloride type in the dry season. Ion ratios indicated the ion sources and chemical behavior. Groundwater remained with a relatively high salt content throughout the seasons, particularly in the samples from the southern portion of the aquifer. PHREEQC software simulations exposed dolomite and calcite in mostly undersaturated condition and halite subsaturated throughout the year. Hydrogeochemical behavior indicated the salt content in the groundwater was not related to a hypothetical saltwater intrusion and revealed a steady state condition for the groundwater interface. Groundwater samples have a similar isotopic signature and were likely influenced by evaporative effects, indicating a role for the existing ponds in aquifer recharge. Strong free surface evaporation effects, evapotranspiration, and drainage processes in the floodplains probably enhanced the high ionic concentration in the groundwater environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Data generated and/or analyzed during this study are included in this published article.

References

  • Anderson, D. J. (2017). Coastal Groundwater and Climate Change, WRL Technical Report 2017/04. Water Research.

  • APHA (American Public Health Association). (1998). Standard Methods for the Examination of Water and (Wastewater). Repress Springfield.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution. 2nd. ed. Balkema.

  • Barbiére, E. B. (1975). A extração de sal e o clima de Cabo Frio. Revista Brasileira de Geografia, 37(4):23–109.

  • Barbiére, E. B. (1997). Flutuações climáticas em Cabo Frio. Revista Do Departamento de Geografia, 95–112. https://doi.org/10.7154/rdg.1997.0011.0008

  • Castro, J. W. A., Suguio, K., Cunha, A. M., Guedes, E., Tâmega, F. T. S., & Rodriguez, R. R. (2012). Beachrocks from the Cabo Frio Island: Unique geological record of the pleistocene-holocene transition in Rio de Janeiro State. Anuário do Instituto de Geociências35(1), 236–241. https://doi.org/10.11137/2012_1_236_241

  • Chapman D., & Kimstach, V. (1996). Selection of water quality variables. In: UNESCO, WHO, UNEP, Water Quality Assessments (Eds.), A guide to use of biota, sediments and water in environmental monitoring. 2nd ed. Cambridge University Press, pp 74–133.

  • Coplen, T. B. (2011). Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry, 25(17), 2538–2560. https://doi.org/10.1002/rcm.5129

    Article  CAS  Google Scholar 

  • Cotta, A. J. B., Fachetti, P. S., & de Andrade, R. P. (2021). Characteristics and impacts on the groundwater of the Guriri beach resort, São Mateus, ES, Brazil. Environment, Development and Sustainability, 23(7), 10601–10622. https://doi.org/10.1007/s10668-020-01074-5

    Article  Google Scholar 

  • CPRM (Brazilian Geological Survey). (2019). Carta de suscetibilidade a movimentos gravitacionais de massa e inundação: Cabo Frio, RJ. Retrieved December 28, 2020, from https://rigeo.cprm.gov.br/xmlui/handle/doc/20809

  • CPRM - GEOSGB (Geosciences System for Brazilian Geological Survey). (2019). Downloads. Retrieved September 23, 2019, from http://geosgb.cprm.gov.br/geosgb/downloads.html

  • Cunha, A. M., Alencar Castro, J. W., & Dias, F. F. (2012). The importance of preserving bioclastic accumulations of the coastal plain of the Una river, county of Cabo Frio and Armação dos Búzios, Rio de Janeiro, Brazil. Anuário do Instituto de Geociências35(1), 58–67. https://doi.org/10.11137/2012_1_58_67

  • Cunha, A. M., Castro, J. W. D. A., & Carvalho, M. D. A. (2017). Holocene shell accumulations from the Cabo Frio Coastal Plain, Southeastern Brazil: Taxonomy, taphonomy, geochronology and paleoenvironmental implications. Ameghiniana, 55(1), 55–74.

    Article  Google Scholar 

  • Cunha, S. B. (1995). Impactos das obras de engenharia sobre o ambiente biofísico da bacia do rio São João (Rio de Janeiro- Brasil). PhD thesis, Universidade de Lisboa, Portugal.

  • Custodio, E., & Llamas, M. R. (1983). Hidrología Subterránea. 2nd ed. Omega.

  • Dantas, M. E., Shinzato, E., Medina, A. I. M., et al. (2000). Mapa Geoambiental do Estado do Rio de Janeiro. CPRM, Projeto Rio de Janeiro.

  • Davidson, P., & Wilson, S. (2011). Groundwaters of Marlborough. Marlborough District Council. ISBN 978–1–927159–03–3

  • DeLaune, R. D., & Reddy, K. R. (2005). Redox potential. Encyclopedia of Soils in the Environment, 366–371. https://doi.org/10.1016/b0-12-348530-4/00212-5

  • Dereczynski, C. P., Oliveira, J. S. D., & Machado, C. O. (2009). Climatologia da precipitação no município do Rio de Janeiro. Revista Brasileira De Meteorologia, 24(1), 24–38. https://doi.org/10.1590/s0102-77862009000100003

    Article  Google Scholar 

  • Ehleringer, J. R., Roden, J., & Dawson, T. E. (2000). Assessing ecosystem-level water relations through stable isotope ratio analyses. In O. E. Sala, R. B. Jackson, & H. A. Mooney (Eds.), Methods in ecosystem science (pp. 181–198). Springer.

    Chapter  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall.

    Google Scholar 

  • G1. (2015). Agricultores da Região dos Lagos sofrem com salinização do Rio Una. Retrieved May 23, 2020, from http://g1.globo.com/rj/regiao-dos-lagos/noticia/2015/03/agricultores-da-regiao-dos-lagos-sofrem-com-salinizacao-do-rio-una.html

  • Gomes, R. P., Oliveira, T. R., Gama, A. R., Lima, F. S., Vieira, J. D. G., Rocha, T. L., & Carneiro, L. C. (2021). Health risk assessment by trace elements in an aquatic system in midwestern Brazil. Research, Society and Development, 10(10), e398101019037. https://doi.org/10.33448/rsd-v10i10.19037

  • GWB (Geochemist's Workbench). (2019). The Geochemist's Workbench Release 12. Retrieved May 23, 2019, from https://www.gwb.com/software_overview.php

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. Department of the Interior, US Geological Survey.

  • Hirata, R., Suhogusoff, A. V., Marcellini, S. S., Villar, P. C., & Marcellini, L. (2019). A revolução silenciosa das águas subterrâneas no Brasil: uma análise da importância do recurso e os riscos pela falta de saneamento. Instituto Trata Brasil.

  • IAEA (International Atomic Energy Agency). (2019). WISER (Water Isotope System for data analysis, visualization and Electronic Retrieval). Retrieved November 02, 2019, from https://nucleus.iaea.org/wiser/index.aspx

  • IBGE (Instituto Brasileiro de Geografia e Estatística). (2010a). Censo Demográfico, Características da população e dos domicílios, Municípios. Retrieved Dezember 22, 2019 from https://www.ibge.gov.br/estatisticas/sociais/populacao/9662-censo-demografico-2010.html?edicao=10503t&t=resultados

  • IBGE (Instituto Brasileiro de Geografia e Estatística). (2010b). Panorama Cabo Frio. Retrieved August 26, 2019, from https://cidades.ibge.gov.br/brasil/rj/cabo-frio/panorama

  • IBGE (Instituto Brasileiro de Geografia e Estatística). (2017). Cartas e mapas. Retrieved May 07, 2019, from http://geoftp.ibge.gov.br/

  • IBGE (Instituto Brasileiro de Geografia e Estatística). (2019). Hidrogeologia 1:250.000. Retrieved September 29, 2019, from https://www.ibge.gov.br/geociencias/

  • INEA (Instituto Estadual do Ambiente). (2019). Shapes. Retrieved December 09, 2019 from http://www.inea.rj.gov.br/wp-content/uploads/2019/01/inea0121705.pdf

  • INEA (Instituto Estadual do Ambiente). (2020). Boletim de qualidade das águas da região hidrográfica VI - Lagos São João. Retrieved December 31, 2019, from http://www.inea.rj.gov.br/wp-content/uploads/2021/01/Dados-Brutos-2020-RH-VI.pdf

  • Ismael, E., Abdelhalim, A., & Heleika, M. A. (2021). Hydrochemical characteristics and quality assessment of groundwater aquifers northwest of Assiut District, Egypt. Journal of African Earth Sciences, 104260. https://doi.org/10.1016/j.jafrearsci.2021.104260

  • Lima, L. A., Machado, D. V., Sabino, H., & Menezes, J. (2020). Caracterização Hidrogeoquímica e Isotópica do Aquífero Costeiro do Distrito de Tamoios/Cabo Frio–RJ. Anuário do Instituto de Geociências43(4), 218–228. https://doi.org/10.11137/2020_4_218_228

  • Lima, L., Calonio, L. W., & Menezes, J. (2012). Mapeamento do Uso e Cobertura do Solo e suas Implicações na Qualidade da Água Subterrânea. Estudo de Caso: Distrito de Tamoios, Cabo-Frio/RJ. Caderno de Estudos Geoambientais-CADEGEO, 2(5), 2–13

  • Margat, J., & Van der Gun, J. (2013). Groundwater around the world: a geographic synopsis. Crc Press.

  • Mohammadzadeh, H., & Eskandari, E. (2021). An in-depth understanding of complex karstic system evolutions of northwest Iran using stable isotopes (δ18O, δ2H, and δ13C) and hydrochemical techniques. Environmental Earth Sciences, 80(18). https://doi.org/10.1007/s12665-021-09925-8

  • Mokadem, N., Dennis, R., & Dennis, I. (2021). Hydrochemical and stable isotope data of water in karst aquifers during normal flow in South Africa. Environmental Earth Sciences, 80(16). https://doi.org/10.1007/s12665-021-09845-7

  • Mondal, P., & Dalai, A. K. (Eds.). (2017). Sustainable utilization of natural resources. CRC Press.

  • Morais, M. R. D. (2016). Impacto da ação antrópica sobre a qualidade da água e da ictiofauna da represa de Juturnaíba, Silva Jardim, RJ (Brasil). Instituto Federal de Educação, Ciência e Tecnologia Fluminense.

  • Nair, I. S., Brindha, K., & Elango, L. (2021). Assessing the origin and processes controlling groundwater salinization in coastal aquifers through integrated hydrochemical, isotopic and hydrogeochemical modelling techniques. Hydrological Sciences Journal, 66(1), 152–164. https://doi.org/10.1080/02626667.2020.1826490

    Article  CAS  Google Scholar 

  • Nijesh, P., Akpataku, K. V., Patel, A., Rai, P., & Rai, S. P. (2021). Spatial variability of hydrochemical characteristics and appraisal of water quality in stressed phreatic aquifer of Upper Ganga Plain, Uttar Pradesh, India. Environmental Earth Sciences, 80(5). https://doi.org/10.1007/s12665-021-09410-2

  • Ojo, O. O. S., & Awokola, O. S. (2012). Determination of groundwater physiochemical parameters of shallow aquifers in Agbowo and Ajibode communities in Oyo State, Southwestern Nigeria. International Journal of Engineering Research and Development, 3(5), 10–23.

    Google Scholar 

  • Oliveira, C. M. (2016). Avaliação dos Impactos Ambientais e Qualidade de Águas Superficiais na Região Hidrográfica VI do Estado do Rio de Janeiro - RJ. Universidade Federal do Rio de Janeiro.

  • Panno, S. V., & Hackley, K. C. (2010). Geological influences on groundwater quality. In D. R. Kolata & C. K. Nimz (Eds.), Geology of Illinois (pp. 337–350). Illinois State Geological Survey.

    Google Scholar 

  • Pastén-Zapata, E., Ledesma-Ruiz, R., Harter, T., Ramírez, A. I., & Mahlknecht, J. (2014). Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Science of the Total Environment, 470–471, 855–864. https://doi.org/10.1016/j.scitotenv.2013.10.043

    Article  CAS  Google Scholar 

  • Paul, D., Skrzypek, G., & Fórizs, I. (2007). Normalization of measured stable isotopic compositions to isotope reference scales–a review. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of up-to-the-Minute Research in Mass Spectrometry, 21(18), 3006–3014. https://doi.org/10.1002/rcm.3185

    Article  CAS  Google Scholar 

  • PNS (Province of Nova Scotia). (2018). The drop on water: Complete List. Retrieved December 30, 2020, from https://www.novascotia.ca/nse/water/thedroponwater.asp

  • Primo, P. B. S., & Völcker, C. M. (2003). Plano das Bacias Hidrográficas da Região dos Lagos e do rio São João. Consórcio Intermunicipal para Gestão das Bacias Hidrográficas da Região dos Lagos, Rio São João e Zona Costeira (CILSJ).

  • Rozanski, K., Araguás-Araguás, L., & Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. Geophysical Monograph-American Geophysical Union, 78, 1–1. https://doi.org/10.1029/GM078p0001

    Article  Google Scholar 

  • Rupias, O. J. B., Pereira, S. Y., & de Abreu, A. E. S. (2021). Hydrogeochemistry and groundwater quality assessment using the water quality index and heavy-metal pollution index in the alluvial plain of Atibaia river- Campinas/SP, Brazil. Groundwater for Sustainable Development, 15, 100661. https://doi.org/10.1016/j.gsd.2021.100661

  • Sabino, H., Menezes, J., & de Lima, L. A. (2020a). Indexing the Groundwater Quality Index for human consumption (GWQI HC) for urban coastal aquifer assessment. Environmental Earth Sciences, 79(8), 1–14. https://doi.org/10.1007/s12665-020-8882-z

    Article  CAS  Google Scholar 

  • Sabino, H., Silva Júnior, G. C. D., Cesar, R., & Menezes, J. (2020b). Heavy metals and major anion content in groundwater of Tamoios coastal district (Rio de Janeiro/Brazil): Assessment of suitability for drinking purposes and human health risk. International Journal of Environmental Analytical Chemistry, 1–23. https://doi.org/10.1080/03067319.2020b.1830981

  • Sang, S., Daí, H., Hu, B. X., Hao, Y., Zhou, T., & Zhang, J. (2019). The study of hydrogeochemical environments and microbial communities along a groundwater salinity gradient in the Pearl River Delta. China. Water, 11(4), 804. https://doi.org/10.3390/w11040804

    Article  CAS  Google Scholar 

  • Santos, A. C. (2008). Noções de Hidroquímica. In Feitosa, F.A.C., Manoel Filho, J., Feitosa, E.C., & Demetrio, J.G.A. (Eds), Hidrogeologia – conceitos e aplicações. 3 ed. CPRM and LABHID.

  • Schmitt, R. D. S., Mansur, K. L., Guerra, J. V., Góes, N. D. F. B., Silva, R. D. S., Ramos, A. S., Machado, G. M. F., Savi, D. C., Geraldes, M. C., Medeiros, S. R., Moraes, J. M., Santos, W. H., Silva, C. B., Matta, P. B., Toledo, P. P., Motoki, A., Sichel, S., Guimarães, P. V., Silva, F. L., & Heilbron, M. (2012). Geologia e recursos minerais das folhas Rio das Ostras e Cabo Frio SF. 24-YA-IV e SF. 23-ZB-VI: estado do Rio de Janeiro. CPRM.

  • Seabra, V. S., Da Silva, G. C., & Cruz, C. B. M. (2009). The use of geoprocessing to assess vulnerability on the east coast aquifers of Rio de Janeiro State. Brazil. Environmental Geology, 57(3), 665–674. https://doi.org/10.1007/s00254-008-1345-6

    Article  Google Scholar 

  • Senthilkumar, S., Gowtham, B., Srinivasamoorthy, K., & Gopinath, S. (2021). Hydrogeochemical delineation of groundwater fitness for drinking and agricultural utilities in Thiruvallur district. South India. Arabian Journal of Geosciences, 14, 526. https://doi.org/10.1007/s12517-021-06547-z

    Article  CAS  Google Scholar 

  • Silva, L. C., Santos, R. A., Delgado, I. M., & Cunha, H. C. S. (2001). Mapa Geológico do Estado do Rio de Janeiro. In: Silva, LC; Cunha, HCS (Org), Geologia do Estado do Rio de Janeiro: texto explicativo do mapa geológico do Estado do Rio de Janeiro. 2nd ed., CPRM.

  • Silva, T. R., Leitão, T. E., Lima, M. M., Martins, T. N., Oliveira, M. M., Albuquerque, M. S., & Costa, W. D. (2021). Hydrogeochemistry and isotope compositions of multi-layered aquifer systems in the Recife Metropolitan Region, Pernambuco (NE Brazil): An integrated approach using multivariate statistical analyses. Journal of South American Earth Sciences, 109, 103323. https://doi.org/10.1016/j.jsames.2021.103323

  • Souza, G. K., von Ahn, C. M. E., Niencheski, L. F. H., & de Andrade, C. F. F. (2021). Effects of coastal lagoon water level on groundwater fluxes of nutrients to the coastal zone of southern Brazil. Journal of Marine Systems, 213, 103459. https://doi.org/10.1016/j.jmarsys.2020.103459

  • Sujatha, D., & Reddy, B. R. (2003). Quality characterization of groundwater in the south-eastern part of the Ranga Reddy district, Andhra Pradesh, India. Environmental Geology44(5), 579–586. https://doi.org/10.1007/s00254-003-0794-1

  • Thangarajan, M. (Ed.). (2007). Groundwater: Resource evaluation, augmentation, contamination, restoration, modeling and management. Springer Science & Business Media.

  • Tubbs Filho, D., Raposo, R. M., & Rosa, F. A. (2012a). Hidrogeoquímica das águas subterrâneasdo”aquífero Tamoios”, município de Cabo Frio, Estado do Rio de Janeiro. XVII Congresso Brasileiro de Águas Subterrâneas.

  • Tubbs Filho, D., Raposo, R. M., & Rosa, F. A. (2012b). Hidrogeologia do “Aquífero Tamoios”, Município de Cabo Frio, Estado do Rio de Janeiro. XVII Congresso Brasileiro de Águas Subterrâneas.

  • UNESCO. (2015). The United Nations world water development report 2015: water for a sustainable world. WWAP and UNESCO. ISBN: 978–92–3–100099–7

  • USGS (United States Geological Survey). (2017). PHREEQC Version 3. Retrieved May 12, 2019, from https://www.usgs.gov/software/phreeqc-version-3

  • WHO & UNICEF. (2017). Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. WHO & UNICEF. ISBN 978–92–4–351289–1

  • Zango, M. S., Pelig-Ba, K. B., Anim-Gyampo, M., Gibrilla, A., & Sunkari, E. D. (2021). Hydrogeochemical and isotopic controls on the source of fluoride in groundwater within the Vea catchment, northeastern Ghana. Groundwater for Sustainable Development, 12, 100526. https://doi.org/10.1016/j.gsd.2020.100526

Download references

Acknowledgements

The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the funding of research by Program of Support for Graduate Studies (PROAP), the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and the Universidade Federal do Rio de Janeiro (UFRJ), for providing funds and infrastructure for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hullysses Sabino.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 3 Content of the parameters analyzed in situ in the rainy and dry season. *ND, no data
Table 4 Concentration of the main physical–chemical parameters of the samples from the rainy and dry season
Table 5 Saturation Indexes of calcite, dolomite, and halite for groundwater in the rainy and dry season

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabino, H., Silva, G.C., Costa, V.E. et al. Conceptual model of a semi-arid coastal aquifer using hydrogeochemical seasonal variation and isotopic fingerprints in Tamoios, Rio de Janeiro, Brazil. Environ Monit Assess 195, 361 (2023). https://doi.org/10.1007/s10661-023-10913-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10913-7

Keywords

Navigation