Skip to main content

Advertisement

Log in

Advance methodological approaches for carbon stock estimation in forest ecosystems

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The forests are a key player in maintaining ecological balance on the earth. They not only conserve biodiversity, reduce soil erosion, and protect watersheds but also promote the above and below-ground ecosystem services. Forests are known as air cleaners on the planet and play a significant role in mitigating greenhouse gas (GHG) emissions into the atmosphere. As per programs launched in the Conference of Parties (COP) 26, there is a need to promote policies and programs to reduce the atmospheric carbon (C) through the forest ecosystem; it is because forests can capture the atmospheric CO2 for a long time and help to achieve the goals of net-zero emission CO2 on the earth. Therefore, there is an urgent need to know the advanced technological approaches for estimating C stock in forest ecosystems. Hence, the present article is aimed at providing a comprehensive protocol for the four C stock estimation approaches. An effort has also been made to compare these methods. This review suggests that tree allometry is the most common method used for the quantification of C stock, but this method has certain limitations. However, the review shows that accurate results can be produced by a combination of two or more methods. We have also analyzed the results of 42 research studies conducted for C stock assessment along with the factors determining the amount of C in different types of forests. The C stock in vegetation is affected by temporal and spatial variation, plantation age, land use, cropping pattern, management practices and elevation, etc. Nevertheless, the available results have a large degree of uncertainty mainly due to the limitations of the methods used. The review supports the conclusion that the uncertainty in C stock measurements can be addressed by the integration of the above-mentioned methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

GHGs:

Greenhouse gases

CO2 :

Carbon dioxide

C:

Carbon

CDM:

Clean development mechanism

UNREDD:

United Nations Programme on Reducing Emissions from Deforestation and Forest Degradation

YR or yr:

Year

YRS or yrs:

Years

DBH:

Diameter at breast height

IPCC:

Intergovernmental Panel on Climate Change

SSA:

State-space approach

IRGA:

Infrared gas analyzer

AGB:

Above-ground biomass

BGB:

Below-ground biomass

EC:

Eddy’s covariance

LiDAR:

Light detection and ranging

SAR:

Synthetic aperture radar

DRD:

Discrete return device

GPS:

Global positioning system

Mg:

Megagram

Ha or ha:

Hectare

UNFCCC:

United Nations Framework Convention on Climate Change

References

  • Agbelade, A. D., & Onyekwelu, J. C. (2020). Tree species diversity, volume yield, biomass and carbon sequestration in urban forests in two Nigerian cities. Urban Ecosystems, 23(5), 957–970.

    Article  Google Scholar 

  • Aguaron, E., & McPherson, E. G. (2012). Comparison of methods for estimating carbon dioxide storage by Sacramento’s urban forest. In Carbon sequestration in urban ecosystems (pp. 43–71). Springer.

  • Anthoni, P. M., Unsworth, M. H., Law, B. E., Irvine, J., Baldocchi, D. D., Van Tuyl, S., & Moore, D. (2002). Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems. Agricultural and Forest Meteorology, 111(3), 203–222.

    Article  Google Scholar 

  • Asner, G. P. (2001). Cloud cover in Landsat observations of the Brazilian Amazon. International Journal of Remote Sensing, 22(18), 3855–3862.

    Article  Google Scholar 

  • Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., et al. (1999). Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Advances in Ecological Research, 30, 113–175.

    Article  Google Scholar 

  • Baldocchi, D. D. (2003a). Assessing the eddy covariance technique for evaluating the carbon balance of ecosystems. Global Change Biology, 9, 1–41.

    Article  Google Scholar 

  • Baldocchi, D. D. (2003b). Assessing ecosystem carbon balance: Problems and prospects of the eddy covariance technique. Global Change Biol, 9(4), 479–492.

    Article  Google Scholar 

  • Bayen, P., Bognounou, F., Lykke, A. M., Ouédraogo, M., & Thiombiano, A. (2016). The use of biomass production and allometric models to estimate carbon sequestration of Jatropha curcas L. plantations in western Burkina Faso. Environment, Development and Sustainability, 18(1), 143–156. https://doi.org/10.1007/s10668-015-9631-4

  • Bijalwan, A. (2013). Vegetation status of agroforestry systems in Tehri district of Garhwal Himalaya, India. Asian Journal of Science and Technology, 4(12), 11–14.

    Google Scholar 

  • Biswas, S., Bala, S., & Mazumdar, A. (2014). Diurnal and seasonal carbon sequestration potential of seven broadleaved species in a mixed deciduous forest in India. Atmospheric Environment, 89, 827–834.

    Article  CAS  Google Scholar 

  • Black, K., Bolger, T., Davis, P., Nieuwenhuis, M., Reidy, B., Saiz, G., et al. (2007). Inventory and eddy covariance-based estimates of annual carbon sequestration in a Sitka spruce (Picea sitchensis (Bong.) Carr.) forest ecosystem. European Journal of Forest Research, 126(2), 167–178.

  • Bowling, D. R., Tans, P. P., & Monson, R. K. (2001). Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Global Change Biology, 7(2), 127–145.

    Article  Google Scholar 

  • Briant, G., Gond, V., & Laurance, S. G. (2010). Habitat fragmentation and the desiccation of forest canopies: A case study from eastern Amazonia. Biological Conservation, 143(11), 2763–2769.

    Article  Google Scholar 

  • Brown, S., & Lugo, A. E. (1982). The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica, 161–187.

  • Byrd, K. B., Ballanti, L., Thomas, N., Nguyen, D., Holmquist, J. R., Simard, M., & Windham-Myers, L. (2018). A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States. ISPRS Journal of Photogrammetry and Remote Sensing, 139, 255–271.

    Article  Google Scholar 

  • Cairns, M. A., Brown, S., Helmer, E. H., & Baumgardner, G. A. (1997). Root biomass allocation in the world’s upland forests. Oecologia, 111(1), 1–11.

    Article  Google Scholar 

  • Chandra, K. K., & Singh, A. K. (2018). Carbon stock appraisal of naturally growing trees on farmlands in plain zone districts of Chhattisgarh India. Tropical Ecology, 59(4), 679–689.

    CAS  Google Scholar 

  • Chaplin-Kramer, R., Ramler, I., Sharp, R., Haddad, N. M., Gerber, J. S., West, P. C., et al. (2015). Degradation in carbon stocks near tropical forest edges. Nature Communications, 6(1), 1–6.

    Article  Google Scholar 

  • Charoenjit, K., Zuddas, P., Allemand, P., Pattanakiat, S., & Pachana, K. (2015). Estimation of biomass and carbon stock in Para rubber plantations using object-based classification from Thaichote satellite data in Eastern Thailand. Journal of Applied Remote Sensing, 9(1), 096072.

    Article  Google Scholar 

  • Cheeseman, J. M. (1991). PATCHY: Simulating and visualizing the effects of stomatal patchiness on photosynthetic CO2 exchange studies. Plant, Cell & Environment, 14(6), 593–599.

    Article  Google Scholar 

  • Chen, B., Black, T. A., Coops, N. C., Hilker, T., Trofymow, J. T., & Morgenstern, K. (2009). Assessing tower flux footprint climatology and scaling between remotely sensed and eddy covariance measurements. Boundary-Layer Meteorology, 130(2), 137–167.

    Article  Google Scholar 

  • Christen, A., Coops, N. C., Crawford, B. R., Kellett, R., Liss, K. N., Olchovski, I., et al. (2011). Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements. Atmospheric Environment, 45(33), 6057–6069.

    Article  CAS  Google Scholar 

  • Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., Ni, J., & Holland, E. A. (2001). Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecological Applications, 11(2), 371–384.

    Article  Google Scholar 

  • Clarke, J. F., & Faoro, R. B. (1966). An evaluation of CO2, measurements as an indicator of air pollution. Journal of the Air Pollution Control Association, 16(4), 212–218. https://doi.org/10.1080/00022470.1966.10468465

    Article  CAS  Google Scholar 

  • Coyne, P. I., & Kelley, J. J. (1975). CO2 exchange over the Alaskan arctic tundra: Meteorological assessment by an aerodynamic method. Journal of Applied Ecology, 587–611.

  • Dhillon, R. S., & von Wuehlisch, G. (2013). Mitigation of global warming through renewable biomass. Biomass and Bioenergy, 48, 75–89.

    Article  Google Scholar 

  • Diédhiou, I., Diallo, D., Mbengue, A. A., Hernandez, R. R., Bayala, R., Diémé, R., et al. (2017). Allometric equations and carbon stocks in tree biomass of Jatropha curcas L. in Senegal’s Peanut Basin. Global Ecology and Conservation, 9, 61–69.

    Article  Google Scholar 

  • Dixon, G. E. (2002). Essential FVS: A user’s guide to the forest vegetation simulator. US Department of Agriculture, Forest Service, Forest Management Service.

  • Djomo, A. N., Ibrahima, A., Saborowski, J., & Gravenhorst, G. (2010). Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. Forest Ecology and Management, 260(10), 1873–1885.

    Article  Google Scholar 

  • Drake, J. B., Knox, R. G., Dubayah, R. O., Clark, D. B., Condit, R., Blair, J. B., & Hofton, M. (2003). Above-ground biomass estimation in closed canopy neotropical forests using lidar remote sensing: Factors affecting the generality of relationships. Global Ecology and Biogeography, 12(2), 147–159.

    Article  Google Scholar 

  • Fayad, I., Baghdadi, N., Guitet, S., Bailly, J. -S., Hérault, B., Gond, V., et al. (2016). Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data. International Journal of Applied Earth Observation and Geoinformation, 52, 502–514.

    Article  Google Scholar 

  • Fayolle, A., Doucet, J.-L., Gillet, J.-F., Bourland, N., & Lejeune, P. (2013). Tree allometry in Central Africa: Testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecology and Management, 305, 29–37.

    Article  Google Scholar 

  • Fazakas, Z., Nilsson, M., & Olsson, H. (1999). Regional forest biomass and wood volume estimation using satellite data and ancillary data. Agricultural and Forest Meteorology, 98, 417–425.

    Article  Google Scholar 

  • Fearnside, P. M. (1999). Forests and global warming mitigation in Brazil: Opportunities in the Brazilian forest sector for responses to global warming under the “clean development mechanism.” Biomass and Bioenergy, 16(3), 171–189.

    Article  Google Scholar 

  • Field, C. B., Ball, J. T., & Berry, J. A. (2000). Photosynthesis: Principles and field techniques. In Plant physiological ecology (pp. 209–253). Springer.

  • Foody, G. M., Boyd, D. S., & Cutler, M. E. (2003). Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85(4), 463–474.

    Article  Google Scholar 

  • Gandhi, D. S., & Sundarapandian, S. (2017). Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats. India. Environmental Monitoring and Assessment, 189(4), 187.

    Article  Google Scholar 

  • García, O. (2011). Dynamical implications of the variability representation in site-index modelling. European Journal of Forest Research, 130(4), 671–675.

    Article  Google Scholar 

  • Gebrewahid, Y., Gebre-Egziabhier, T. -B., Teka, K., & Birhane, E. (2018). Carbon stock potential of scattered trees on farmland along an altitudinal gradient in Tigray. Northern Ethiopia. Ecological Processes, 7(1), 1–8.

    Google Scholar 

  • Gielen, B., De Vos, B., Campioli, M., Neirynck, J., Papale, D., Verstraeten, A., et al. (2013). Biometric and eddy covariance-based assessment of decadal carbon sequestration of a temperate Scots pine forest. Agricultural and Forest Meteorology, 174, 135–143.

    Article  Google Scholar 

  • Goetz, S., & Dubayah, R. (2011). Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Management, 2(3), 231–244.

    Article  Google Scholar 

  • Goswami, S., Verma, K. S., & Kaushal, R. (2014). Biomass and carbon sequestration in different agroforestry systems of a Western Himalayan watershed. Biological Agriculture & Horticulture, 30(2), 88–96.

    Article  Google Scholar 

  • Goulden, M. L., Munger, J. W., Fan, S. -M., Daube, B. C., & Wofsy, S. C. (1996). Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy. Global Change Biology, 2(3), 169–182.

    Article  Google Scholar 

  • Grigal, D. F., & Kernik, L. K. (1984). Generality of black spruce biomass estimation equations. Canadian Journal of Forest Research, 14(3), 468–470.

    Article  Google Scholar 

  • Grimmond, C. S. B., King, T. S., Cropley, F. D., Nowak, D. J., & Souch, C. (2002). Local-scale fluxes of carbon dioxide in urban environments: Methodological challenges and results from Chicago. Environmental Pollution, 116, S243–S254.

    Article  CAS  Google Scholar 

  • Gupta, D. K., Bhatt, R. K., Keerthika, A., Noor Mohammed, M. B., Shukla, A. K., & Jangid, B. L. (2019). Carbon sequestration potential of Hardwickia binata Roxb. based agroforestry in hot semi-arid environment of India: An assessment of tree density impact. Current Science, 116(1), 112–116.

  • Hastuti, A. W., Suniada, K. I., & Islamy, F. (2018). Carbon stock estimation of mangrove vegetation using remote sensing in Perancak Estuary, Jembrana District, Bali. International Journal of Remote Sensing and Earth Sciences (IJReSES), 14(2), 137–150.

    Article  Google Scholar 

  • Henry, M., Besnard, A., Asante, W. A., Eshun, J., Adu-Bredu, S., Valentini, R., et al. (2010). Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management, 260(8), 1375–1388.

    Article  Google Scholar 

  • Hickey, S. M., Callow, N. J., Phinn, S., Lovelock, C. E., & Duarte, C. M. (2018). Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach. Estuarine, Coastal and Shelf Science, 200, 194–201.

    Article  CAS  Google Scholar 

  • Hiller, R. V., McFadden, J. P., & Kljun, N. (2011). Interpreting CO 2 fluxes over a suburban lawn: The influence of traffic emissions. Boundary-Layer Meteorology, 138(2), 215–230.

    Article  Google Scholar 

  • Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309.

    Article  Google Scholar 

  • Hunt, S. (2003). Measurements of photosynthesis and respiration in plants. Physiologia Plantarum, 117(3), 314–325.

    Article  CAS  Google Scholar 

  • Jarvis, P. G. (1976). Coniferous Forest. Vegetation and the Atmosphere, 2, 171–240.

    Google Scholar 

  • Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. (2003). National-scale biomass estimators for United States tree species. Forest Science, 49(1), 12–35.

    Google Scholar 

  • Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4), 663–666.

    Article  Google Scholar 

  • Kaimal, J. C., & Wyngaard, J. C. (1990). The Kansas and Minnesota experiments. Boundary-Layer Meteorology, 50(1), 31–47.

    Article  Google Scholar 

  • Katul, G. G., Geron, C. D., Hsieh, C. -I., Vidakovic, B., & Guenther, A. B. (1998). Active turbulence and scalar transport near the forest–atmosphere interface. Journal of Applied Meteorology, 37(12), 1533–1546.

    Article  Google Scholar 

  • Keller, M., Clark, D. A., Clark, D. B., Weitz, A. M., & Veldkamp, E. (1996). If a tree falls in the forest. Science, 273(5272), 201–201.

    Article  CAS  Google Scholar 

  • Kieth, H., Barrett, D. J., & Keenan, R. (1999). Review of allometric relationships for estimating woody biomass for New South Wales, the Australian Capital Territory, Victoria, Tasmania and South Australia.

  • Kölling, K., George, G. M., Künzli, R., Flütsch, P., & Zeeman, S. C. (2015). A whole-plant chamber system for parallel gas exchange measurements of Arabidopsis and other herbaceous species. Plant Methods, 11, 48. https://doi.org/10.1186/s13007-015-0089-z

    Article  CAS  Google Scholar 

  • Kongsager, R., Napier, J., & Mertz, O. (2013). The carbon sequestration potential of tree crop plantations. Mitigation and Adaptation Strategies for Global Change, 18(8), 1197–1213.

    Article  Google Scholar 

  • Krasnova, A., Kukumägi, M., Mander, Ü., Torga, R., Krasnov, D., Noe, S. M., et al. (2019). Carbon exchange in a hemiboreal mixed forest in relation to tree species composition. Agricultural and Forest Meteorology, 275, 11–23.

    Article  Google Scholar 

  • Kumar, A., Singh, V., Shabnam, S., & Oraon, P. R. (2020). Carbon emission, sequestration, credit and economics of wheat under poplar based agroforestry system. Carbon Management, 11(6), 673–679.

    Article  CAS  Google Scholar 

  • Larsen, K. S., Ibrom, A., Beier, C., Jonasson, S., & Michelsen, A. (2007). Ecosystem respiration depends strongly on photosynthesis in a temperate heath. Biogeochemistry, 85(2), 201–213.

    Article  CAS  Google Scholar 

  • Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L., Bruna, E. M., Didham, R. K., Stouffer, P. C., et al. (2002). Ecosystem decay of Amazonian forest fragments: A 22-year investigation. Conservation Biology, 16(3), 605–618.

    Article  Google Scholar 

  • Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). Lidar remote sensing for ecosystem studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience, 52(1), 19–30. https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2

    Article  Google Scholar 

  • Lin, J., Kroll, C. N., & Nowak, D. J. (2021). An uncertainty framework for i-Tree eco: A comparative study of 15 cities across the United States. Urban Forestry & Urban Greening, 60, 127062. https://doi.org/10.1016/j.ufug.2021.127062

    Article  Google Scholar 

  • Litton, C. M., & Boone Kauffman, J. (2008). Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica, 40(3), 313–320.

    Article  Google Scholar 

  • Loescher, H. W., Law, B. E., Mahrt, L., Hollinger, D. Y., Campbell, J., & Wofsy, S. C. (2006). Uncertainties in, and interpretation of, carbon flux estimates using the eddy covariance technique. Journal of Geophysical Research: Atmospheres, 111(D21).

  • Long, S. P., & Bernacchi, C. J. (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54(392), 2393–2401. https://doi.org/10.1093/jxb/erg262

    Article  CAS  Google Scholar 

  • Long, S. P., Farage, P. K., & Garcia, R. L. (1996). Measurement of leaf and canopy photosynthetic CO2 exchange in the field. Journal of Experimental Botany, 47(11), 1629–1642.

    Article  CAS  Google Scholar 

  • Losi, C. J., Siccama, T. G., Condit, R., & Morales, J. E. (2003). Analysis of alternative methods for estimating carbon stock in young tropical plantations. Forest Ecology and Management, 184(1–3), 355–368.

    Article  Google Scholar 

  • Marchetti, M., Sallustio, L., Ottaviano, M., Barbati, A., Corona, P., Tognetti, R., et al. (2012). Carbon sequestration by forests in the National Parks of Italy. Plant Biosystems-an International Journal Dealing with All Aspects of Plant Biology, 146(4), 1001–1011.

    Article  Google Scholar 

  • Martin, N. A. (2011). A 100% tree inventory using i-Tree Eco protocol: A case study at Auburn University, Alabama (PhD Thesis).

  • Masek, J. G., & Collatz, G. J. (2006). Estimating forest carbon fluxes in a disturbed southeastern landscape: Integration of remote sensing, forest inventory, and biogeochemical modeling. Journal of Geophysical Research: Biogeosciences, 111(G1).

  • Masek, J. G., Hayes, D. J., Joseph Hughes, M., Healey, S. P., & Turner, D. P. (2015). The role of remote sensing in process-scaling studies of managed forest ecosystems. Forest Ecology and Management, 355, 109–123. https://doi.org/10.1016/j.foreco.2015.05.032

    Article  Google Scholar 

  • McDermitt, D. K., Garcia, R. L., Welles, J. M., & Demetriades-Shah, T. H. (2001). Common errors in gas exchange measurements. Probing Photosynthesis. Mechanisms, Regulation and Adaptation, 525–538.

  • McHale, M. R., Burke, I. C., Lefsky, M. A., Peper, P. J., & McPherson, E. G. (2009). Urban forest biomass estimates: Is it important to use allometric relationships developed specifically for urban trees? Urban Ecosystems, 12(1), 95–113.

    Article  Google Scholar 

  • Mensah, S., Noulekoun, F., & Ago, E. E. (2020). Aboveground tree carbon stocks in West African semi-arid ecosystems: Dominance patterns, size class allocation and structural drivers. Global Ecology and Conservation, 24, e01331.

    Article  Google Scholar 

  • Mønster, J., Kjeldsen, P., & Scheutz, C. (2019). Methodologies for measuring fugitive methane emissions from landfills – A review. Waste Management, 87, 835–859. https://doi.org/10.1016/j.wasman.2018.12.047

    Article  CAS  Google Scholar 

  • Montagu, K. D., Düttmer, K., Barton, C. V. M., & Cowie, A. L. (2005). Developing general allometric relationships for regional estimates of carbon sequestration—An example using Eucalyptus pilularis from seven contrasting sites. Forest Ecology and Management, 204(1), 115–129. https://doi.org/10.1016/j.foreco.2004.09.003

    Article  Google Scholar 

  • Monteith, J. L. (1976). Vegetation and the atmosphere: Case studies. Academic Press.

    Google Scholar 

  • Naik, S. K., Sarkar, P. K., Das, B., Singh, A. K., & Bhatt, B. P. (2019). Biomass production and carbon stocks estimate in mango orchards of hot and sub-humid climate in eastern region. India. Carbon Management, 10(5), 477–487.

    Article  CAS  Google Scholar 

  • Naveenkumar, J., Arunkumar, K. S., & Sundarapandian, S. M. (2017). Biomass and carbon stocks of a tropical dry forest of the Javadi Hills, Eastern Ghats. India. Carbon Management, 8(5–6), 351–361.

    Article  CAS  Google Scholar 

  • Nayak, A. K., Rahman, M. M., Naidu, R., Dhal, B., Swain, C. K., Nayak, A. D., et al. (2019). Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. Science of the Total Environment, 665, 890–912. https://doi.org/10.1016/j.scitotenv.2019.02.125

    Article  CAS  Google Scholar 

  • Nowak, D. J., Crane, D. E., Stevens, J. C., Hoehn, R. E., Walton, J. T., & Bond, J. (2008). A ground-based method of assessing urban forest structure and ecosystem services. Aboriculture & Urban Forestry. 34 (6): 347–358., 34(6).

  • Nowak, D. J., Greenfield, E. J., Hoehn, R. E., & Lapoint, E. (2013). Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution, 178, 229–236.

    Article  CAS  Google Scholar 

  • Pairman, D., Belliss, S. E., & McNeill, S. J. (1997). Terrain influences on SAR backscatter around Mt. Taranaki, New Zealand. IEEE transactions on geoscience and remote sensing, 35(4), 924–932.

  • Pala, N. A., Negi, A. K., Gokhale, Y., Aziem, S., Vikrant, K. K., & Todaria, N. P. (2013). Carbon stock estimation for tree species of Sem Mukhem sacred forest in Garhwal Himalaya India. Journal of Forestry Research, 24(3), 457–460.

    Article  CAS  Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993. https://doi.org/10.1126/science.1201609

    Article  CAS  Google Scholar 

  • Pasalodos-Tato, M., Almazán Riballo, E., Montero, G., & Diaz-Balteiro, L. (2017). Evaluation of tree biomass carbon stock changes in Andalusian forests: Comparison of two methodologies. Carbon Management, 8(2), 125–134.

    Article  CAS  Google Scholar 

  • Pastor, J., Aber, J. D., & Melillo, J. M. (1984). Biomass prediction using generalized allometric regressions for some northeast tree species. Forest Ecology and Management, 7(4), 265–274.

    Article  Google Scholar 

  • Patenaude, G., Milne, R., & Dawson, T. P. (2005). Synthesis of remote sensing approaches for forest carbon estimation: Reporting to the Kyoto Protocol. Environmental Science & Policy, 8(2), 161–178. https://doi.org/10.1016/j.envsci.2004.12.010

    Article  CAS  Google Scholar 

  • Patil, V., Singh, A., Naik, N., & Unnikrishnan, S. (2015). Estimation of mangrove carbon stocks by applying remote sensing and GIS techniques. Wetlands, 35(4), 695–707.

    Article  Google Scholar 

  • Peck, M. R., Kaina, G. S., Hazell, R. J., Isua, B., Alok, C., Paul, L., & Stewart, A. J. (2017). Estimating carbon stock in lowland Papua New Guinean forest: Low density of large trees results in lower than global average carbon stock. Austral Ecology, 42(8), 964–975.

    Article  Google Scholar 

  • Peichl, M., Thevathasan, N. V., Gordon, A. M., Huss, J., & Abohassan, R. A. (2006). Carbon sequestration potentials in temperate tree-based intercropping systems, southern Ontario. Canada. Agroforestry Systems, 66(3), 243–257.

    Article  Google Scholar 

  • Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., et al. (2012). Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems.

  • Peters, E. B., & McFadden, J. P. (2012). Continuous measurements of net CO2 exchange by vegetation and soils in a suburban landscape. Journal of Geophysical Research: Biogeosciences, 117(G3).

  • Picard, N., Saint-André, L., & Henry, M. (2012). Manual for building tree volume and biomass allometric equations: From field measurement to prediction. Manual for building tree volume and biomass allometric equations: from field measurement to prediction, FAO; Food and Agricultural Organization of the United Nations (2012).

  • Piovesan, G., & Adams, J. M. (2000). Carbon balance gradient in European forests: Interpreting EUROFLUX. Journal of Vegetation Science, 11(6), 923–926.

    Article  Google Scholar 

  • Portela, M. G. T., de Espindola, G. M., Valladares, G. S., Amorim, J. V. A., & Frota, J. C. O. (2020). Vegetation biomass and carbon stocks in the Parnaíba River Delta. NE Brazil. Wetlands Ecology and Management, 28(4), 607–622.

    Article  CAS  Google Scholar 

  • Pragasan, L. A. (2020). Tree carbon stock and its relationship to key factors from a tropical hill forest of Tamil Nadu, India. Geology, Ecology, and Landscapes, 1–8.

  • Qureshi, A., Badola, R., & Hussain, S. A. (2012). A review of protocols used for assessment of carbon stock in forested landscapes. Environmental Science & Policy, 16, 81–89.

    Article  Google Scholar 

  • Raciti, S. M., Hutyra, L. R., & Newell, J. D. (2014). Mapping carbon storage in urban trees with multi-source remote sensing data: Relationships between biomass, land use, and demographics in Boston neighborhoods. Science of the Total Environment, 500, 72–83.

    Article  Google Scholar 

  • Rahman, H. T., Deb, J. C., Hickey, G. M., & Kayes, I. (2014). Contrasting the financial efficiency of agroforestry practices in buffer zone management of Madhupur National Park. Bangladesh. Journal of Forest Research, 19(1), 12–21.

    Article  Google Scholar 

  • Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. (2019). Remote Sensing of Environment, 233, 111383. https://doi.org/10.1016/j.rse.2019.111383

  • Reynolds, O. (1895). IV. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical transactions of the royal society of london.(a.), (186), 123–164.

  • Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D., & Harlan, J. (1974). Monitoring the vernal advancement of retrogradation of natural vegetation, nasa/gsfc, type iii, final report. Greenbelt, MD, 371.

  • Saatchi, S. S., & HOUGHTON, R. A., Dos Santos Alvala, R. C., Soares, J. V., & Yu, Y. (2007). Distribution of aboveground live biomass in the Amazon basin. Global Change Biology, 13(4), 816–837.

    Article  Google Scholar 

  • Saeed, S., Yujun, S., Beckline, M., Chen, L., Zhang, B., Ahmad, A., et al. (2019). Forest edge effect on biomass carbon along altitudinal gradients in Chinese Fir (Cunninghamia lanceolata): A study from Southeastern China. Carbon Management, 10(1), 11–22.

    Article  CAS  Google Scholar 

  • Santantonio, D., RK, H., & WS, O. (1977). Root biomass studies in forest ecosystems.

  • Sferlazza, S., Maetzke, F. G., Iovino, M., Baiamonte, G., Palmeri, V., & La Mela Veca, D. S. (2018). Effects of traditional forest management on carbon storage in a Mediterranean holm oak (Quercus ilex L.) coppice. Iforest-Biogeosciences and Forestry, 11(2), 344.

  • Shen, S., & Leclerc, M. Y. (1997). Modelling the turbulence structure in the canopy layer. Agricultural and Forest Meteorology, 87(1), 3–25.

    Article  Google Scholar 

  • Shukla, P. R., Skeg, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H. -O., Roberts, D. C., et al. (2019). Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.

  • Sinha, S., Jeganathan, C., Sharma, L. K., & Nathawat, M. S. (2015). A review of radar remote sensing for biomass estimation. International Journal of Environmental Science and Technology, 12(5), 1779–1792.

    Article  Google Scholar 

  • Skovsgaard, J. P., & Vanclay, J. K. (2008). Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. Forestry: An International Journal of Forest Research, 81(1), 13–31.

  • Smith, R., Renton, M., & Reid, N. (2017). Growth and carbon sequestration by remnant Eucalyptus camaldulensis woodlands in semi-arid Australia during La Niña conditions. Agricultural and Forest Meteorology, 232, 704–710.

    Article  Google Scholar 

  • Srinivas, K., & Sundarapandian, S. (2019). Biomass and carbon stocks of trees in tropical dry forest of East Godavari region, Andhra Pradesh, India. Geology, Ecology, and Landscapes, 3(2), 114–122.

    Article  Google Scholar 

  • Ståhl, G., Boström, B., Lindkvist, H., Lindroth, A., Nilsson, J., & Olsson, M. (2003). Methodological options for quantifying changes in carbon pools in Swedish forests.

  • Stancil, K. (2021). Atmospheric CO2 passes 420 PPM for first time ever. EcoWatch. Retrieve May 19, 2022 from, https://www.ecowatch.com/carbon-dioxide-exceeds-420-2651380906.html

  • Strohbach, M. W., & Haase, D. (2012). Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landscape and Urban Planning, 104(1), 95–104.

    Article  Google Scholar 

  • Tamayo, P. R., Weiss, O., & Sánchez-Moreiras, A. M. (2001). Gas exchange techniques in photosynthesis and respiration infrared gas analyser. In Handbook of plant ecophysiology techniques (pp. 113–139). Springer.

  • Tanwar, S. P. S., Verma, A., Kumar, P., Alam, N. M., & Bhatt, R. K. (2020). Biomass and carbon projection models in Hardwickia binata Roxb. vis a vis estimation of its carbon sequestration potential under arid environment. Archives of Agronomy and Soil Science, 66(14), 1925–1935.

  • Teets, A., Fraver, S., Hollinger, D. Y., Weiskittel, A. R., Seymour, R. S., & Richardson, A. D. (2018). Linking annual tree growth with eddy-flux measures of net ecosystem productivity across twenty years of observation in a mixed conifer forest. Agricultural and Forest Meteorology, 249, 479–487. https://doi.org/10.1016/j.agrformet.2017.08.007

    Article  Google Scholar 

  • The World Counts. (2022). CO2 concentration. Retrieved May 19, 2022, from https://www.theworldcounts.com/challenges/climate-change/global-warming/CO2-concentration/story

  • TOLUNAY, D. (2011). Total carbon stocks and carbon accumulation in living tree biomass in forest ecosystems of Turkey. Turkish Journal of Agriculture and Forestry, 35(3), 265–279.

    Google Scholar 

  • Torres, D. A., del Valle, J. I., & Restrepo, G. (2020). Teak growth, yield-and thinnings’ simulation in volume and biomass in Colombia. Annals of Forest Research, 63(1), 53–70.

    Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.

    Article  Google Scholar 

  • Uri, V., Varik, M., Aosaar, J., Kanal, A., Kukumägi, M., & Lõhmus, K. (2012). Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. Forest Ecology and Management, 267, 117–126.

    Article  Google Scholar 

  • US EPA, O. (2016). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2015. Reports and Assessments. Retrieved May 19, 2022, from https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2015

  • Vallet, P., Meredieu, C., Seynave, I., Bélouard, T., & Dhôte, J. -F. (2009). Species substitution for carbon storage: Sessile oak versus Corsican pine in France as a case study. Forest Ecology and Management, 257(4), 1314–1323.

    Article  Google Scholar 

  • Van Zyl, J. J. (1993). The effect of topography on radar scattering from vegetated areas. IEEE Transactions on Geoscience and Remote Sensing, 31(1), 153–160.

    Article  Google Scholar 

  • Vastaranta, M., Holopainen, M., Karjalainen, M., Kankare, V., Hyyppä, J., Kaasalainen, S., & Hyyppä, H. (2012). SAR radargrammetry and scanning LiDAR in predicting forest canopy height. In 2012 IEEE International Geoscience and Remote Sensing Symposium (pp. 6515–6518). IEEE.

  • Verma, S. B., Kim, J., & Clement, R. J. (1989). Carbon dioxide, water vapor and sensible heat fluxes over a tallgrass prairie. Boundary-Layer Meteorology, 46(1), 53–67.

    Article  Google Scholar 

  • Vieilledent, G., Vaudry, R., Andriamanohisoa, S. F., Rakotonarivo, O. S., Randrianasolo, H. Z., Razafindrabe, H. N., et al. (2012). A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecological Applications, 22(2), 572–583.

    Article  CAS  Google Scholar 

  • Warburg, O. (1919). The rate of photochemical decomposition of carbonic acid in living cells. Biochemische Zeitschrift, 100, 230–270.

    CAS  Google Scholar 

  • Wauters, J. -B., Coudert, S., Grallien, E., Jonard, M., & Ponette, Q. (2008). Carbon stock in rubber tree plantations in Western Ghana and Mato Grosso (Brazil). Forest Ecology and Management, 255(7), 2347–2361.

    Article  Google Scholar 

  • Weissert, L. F., Salmond, J. A., & Schwendenmann, L. (2014). A review of the current progress in quantifying the potential of urban forests to mitigate urban CO2 emissions. Urban Climate, 8, 100–125.

    Article  Google Scholar 

  • Wotherspoon, A., Thevathasan, N. V., Gordon, A. M., & Voroney, R. P. (2014). Carbon sequestration potential of five tree species in a 25-year-old temperate tree-based intercropping system in southern Ontario. Canada. Agroforestry Systems, 88(4), 631–643.

    Article  Google Scholar 

  • Wu, J., Wang, Y., Qiu, S., & Peng, J. (2019). Using the modified i-Tree Eco model to quantify air pollution removal by urban vegetation. Science of the Total Environment, 688, 673–683. https://doi.org/10.1016/j.scitotenv.2019.05.437

    Article  CAS  Google Scholar 

  • Wykoff, W. (1982). User’s guide to the stand prognosis model (Vol. 133). US Department of Agriculture, Forest Service, Intermountain Forest and Range.

  • Yadav, V. S., Yadav, S. S., Gupta, S. R., Meena, R. S., Lal, R., Sheoran, N. S., & Jhariya, M. K. (2022). Carbon sequestration potential and CO2 fluxes in a tropical forest ecosystem. Ecological Engineering, 176, 106541.

    Article  Google Scholar 

  • Yanai, R. D., Wayson, C., Lee, D., Espejo, A. B., Campbell, J. L., Green, M. B., et al. (2020). Improving uncertainty in forest carbon accounting for REDD+ mitigation efforts. Environmental Research Letters, 15(12), 124002.

    Article  CAS  Google Scholar 

  • Zhao, M., Kong, Z., Escobedo, F. J., & Gao, J. (2010). Impacts of urban forests on offsetting carbon emissions from industrial energy use in Hangzhou. China. Journal of Environmental Management, 91(4), 807–813.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Council of Scientific and Industrial Research (CSIR), New Delhi, and DST-SERB and DST-FIST, New Delhi, for providing financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Abhishek Nandal: Conceptualization, investigation, data curation, writing—original draft. Surender Singh Yadav: Conceptualization, supervision, validation, review and editing. Amrender Singh Rao: Investigation and data curation. Ram Swaroop Meena: Conceptualization, review and editing. Rattan Lal: Conceptualization, review and editing.

Corresponding author

Correspondence to Surender Singh Yadav.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Forests are a key player in maintaining ecological balance on the earth.

• Four different methods for carbon stock estimation are described.

• Research studies from different continents were analyzed.

• Tree allometry is the most common used method for carbon stock estimation.

• Accurate results can be produced by a combination of two or more methods.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandal, A., Yadav, S.S., Rao, A.S. et al. Advance methodological approaches for carbon stock estimation in forest ecosystems. Environ Monit Assess 195, 315 (2023). https://doi.org/10.1007/s10661-022-10898-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10898-9

Keywords

Navigation